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ABSTRACT 

 

 

 

  Though economically favorable when compared to other renewable energy storage technologies, 

thermal energy storage systems for concentrating solar thermal power (CSP) plants require additional cost 

reduction measures to help transition CSP plants to the point of grid-parity. Thermocline packed bed 

storage is regarded as one potential low cost solution due to the single tank requirement and low cost 

storage media. Thus sensible heat storage (SHS) and latent heat storage (LHS) packed bed systems, which 

are two thermocline varieties, are frequently investigated. LHS systems can be further classified as single 

phase change material (PCM) systems or cascaded systems wherein multiple PCMs are employed. 

 This study compared the performance of SHS, single PCM, and cascaded PCM direct storage 

systems under the conditions that may be encountered in utility-scale molten salt CSP plants operating 

between 565°C and 288°C. A small-scale prototype SHS packed bed system was constructed and operated 

for use in validating a numerical model. The drawbacks of the latent heat storage process were discussed, 

and cascaded systems were investigated for their potential in mitigating the issues associated with 

adopting a single PCM. Several cascaded PCM configurations were evaluated. The study finds that the 

volume fraction of each PCM and the arrangement of latent heat in a 2-PCM and a 3-PCM system 

influences the output of the system, both in terms of quality and quantity of energy. In addition to 

studying systems of hypothetical PCMs, real salt PCM systems were examined and their selection process 

was discussed. 

 A preliminary economic assessment was conducted to compare the cost of SHS, single-PCM 

LHS, cascaded LHS, and state-of-the-art 2-tank systems. To the author’s knowledge, this is the first study 

that compares the cost of all three thermocline packed bed systems with the 2-tank design. The SHS 

system is significantly lower in cost than the remaining systems, however the LHS system does show 
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some economic benefit over the 2-tank design. If LHS systems are to be viable in the future, low cost 

storage media and encapsulation techniques are necessary. 
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CHAPTER 1: INTRODUCTION AND BACKGROUND 

 

1.1 Introduction 

 While many renewable energy technologies continue to suffer from impediments in storage,  

concentrating solar thermal power (CSP) plants benefit from their capacity to adopt economical, easily 

dispatchable storage systems [1]. When implemented, these storage systems can mitigate the issue of 

solar radiation intermittency to varying degrees that are dictated by its size and function. Smaller systems 

for instance, may be designed to provide a few hours of storage for buffering during periods of cloud 

cover whereas larger systems can be employed to improve a plant’s dispatchability [2]. In order to 

promote competition between CSP and fossil fuel powered plants and to ensure long-term market 

viability, storage systems must ultimately play a greater role in augmenting a plant’s annual energy 

production.  

Current state-of-the-art storage systems rely on the dual-tank method to store energy. As 

demonstrated in Figure 1, a liquid sensible heat storage medium either directly or indirectly captures 

thermal energy as the liquid is actively transferred from a “cold” tank to a “hot” tank. Though low-risk 

and simple in design, the cost of this approach remains in excess of a value that would advance CSP 

plants to the point of grid parity. Alternative, more robust storage methods may also be required as 

developments in CSP technology continue to expand and diversify. Consequently, numerous research 

efforts are directed at developing storage systems that manifest lower costs through reductions in storage 

material volume or equipment requirements.  

Packed bed thermocline storage is one such alternative that has exhibited widespread 

investigation from lab-scale to large pilot-scale systems. They are deemed beneficial due to the single 

tank requirement and potential use of low-cost storage media. The storage media in a packed bed system 
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remains stationary as a heat transfer fluid (HTF) transfers energy from the solar field to the storage 

material. In this process, known as charging mode, the hot HTF enters the system from the top of the tank 

and exits at a lower temperature from the bottom of the system before returning to the solar field. Ideally 

the outlet HTF temperature would be maintained at or near the initial bed temperature, indicating efficient 

and complete removal of the energy that is carried in by the HTF. When the stored energy needs to be 

retrieved, the reverse process, known as discharging mode, is enabled. “Cold” HTF enters the system 

from the bottom and is pumped up vertically to the top where it exits at the “hot” temperature and 

proceeds to the power block. 

 

Figure 1. Configuration of a parabolic trough CSP plant with state-of-the-art indirect dual tank storage 

system [3]. (Copyright permission in Appendix C). 

 

As illustrated in Figure 2, the storage process is characterized by the development of three distinct 

thermal zones along the height of the bed. At the onset of charging, the heat transfer fluid enters the tank 

and fills the pore space of the bed, exchanging energy with the solid media thus establishing a heat 

transfer region known as the thermocline zone. As charging progresses, the thermocline zone travels 

down the bed, leaving a high temperature region behind it and shortening the low temperature region 

below it. The nearly isothermal upper and lower regions of the tank are identified as the hot and cold 

zones, respectively. The heat transfer fluid and thermocline zone then move in the reverse direction 
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during discharging mode. Thermal stratification is maintained by a density gradient which generates 

buoyancy forces that minimize mixing of the hot and cold zones. A well stratified system has a narrow 

thermocline region which enhances the operational efficiency of the system by maintaining low 

temperatures at the bottom of the tank during charging and a nearly constant exit temperature during 

discharging. Ineffective stratification results in exergy degradation characterized by high levels of mixing 

and loss of exergy as unutilized high temperature HTF exits the bed during charging mode [4]. 

 

 

 

 

 

 

 

 

 

 

Figure 2. Schematic illustrating the zones of a thermocline storage tank.  

 

Packed bed thermal energy storage (TES) systems can be categorized by the physical state of the 

material during which energy is stored and released. Sensible heat storage (SHS) packed bed systems are 

comprised  of solid filler materials that exhibit a change in temperature as heat transfer occurs. Potential 

sensible heat storage media span a large breadth of materials including low cost substances such as sand 

and rock. Latent heat storage (LHS) systems consist of filler media that change phase, typically from solid 

to liquid, at a temperature that falls within the operating temperature range of the solar field. Their added 

value lies in reduced material requirements due to the high volumetric storage density that results from 

HTF  

charging  

inlet 

Hot Zone 

Thermocline Zone 

Cold Zone 

HTF 

discharging 

outlet 
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the phase change process. For high temperature utility-scale applications, whether sensible or latent heat 

storage, the filler material must be inert to the heat transfer fluid as well as any containment material. 

They mus also withstand thousands of thermal cycles.  

Several studies have investigated the behavior and performance of packed bed latent heat storage 

systems. In such systems, the thermocline region consists not only of the sensible heat exchange zone, but 

is extended to include an iso-thermal heat exchange zone caused by the phase change process. The 

relative movement of these two heat exchange segments complicates the storage and removal of thermal 

energy and is heavily influenced by the thermophysical properties of the PCM, such as melting 

temperature and latent heat of fusion [5].  

Numerous studies evaluate the thermodynamic efficiency and conduct parametric studies to 

assess the factors that influence system performance. Though these analyses evaluate metrics that are 

important in selecting a storage technique, economics ultimately defines its viability for 

commercialization. In order to elucidate whether latent heat storage exhibits economic gain over sensible 

heat storage due to the added energy density, an effort is made to compare the thermodynamic and 

economic efficiencies of these two storage types. The motivation for this work is to identify a cost-

effective storage technology that can be commercially deployed in the near future. The objective is to 

demonstrate the technical and economic benefit of thermocline storage systems, and to conclude whether 

latent heat storage is more advantageous than sensible heat storage systems. These objectives will be 

fulfilled by accomplishing the following goals: 

1.) Construction and operation of an experimental packed bed sensible heat storage system that 

will enable validation of a numerical model. The model allows for an in-depth analysis of 

system performance and cost. Though the conventional 2-tank design is a sensible heat 

storage system, use of the acronym “SHS” throughout the remainder of the study specifically 

refers to sensible heat packed bed thermocline systems. 
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2.) Development of a packed bed LHS model that will be employed for a detailed study of the 

dynamics and trade-offs of using phase change materials (PCMs). Hypothetical and real 

PCMs are evaluated. A comparative analysis between single PCM, multiple PCMs, and 

sensible heat storage systems with realistic storage media will be conducted. 

3.) Establishment of the economic benefits and weaknesses of all three storage system types, i.e. 

single PCM, multiple PCMs, and SHS, over the state-of-the-art 2-tank system. 

1.2 Background 

The HTF that is to be used in the solar field and hence the packed bed storage system is dictated 

by the CSP technology in place. These potential HTFs include air, molten salt, synthetic oil, and steam. 

The interaction between the HTF and storage media can be studied from different levels. For a component 

level assessment, the focus can pertain to material selection, compatibility between the storage material, 

containment material and HTF, and heat transfer enhancement mechanisms that improve the rate of 

energy exchange between the HTF and storage media. From a system level perspective, studies include 

investigations on controls for charging and discharging of the HTF, costs, performance evaluation, as well 

as system behavior and losses. Since the motivation for this work is to evaluate the economics and 

performance of CSP storage from a systems level perspective, the following discussion provides a review 

on system studies of high temperature sensible heat and latent heat storage. 

1.2.1 Sensible Heat Storage    

In sensible heat packed bed storage systems, the HTF is typically in direct contact with the 

storage media. This rather simple storage strategy does not require HTF piping or encapsulation 

techniques, thus minimizing extraneous costs. There are several aspects from which these systems are 

evaluated. From a thermo-mechanical perspective, it is important to assess the relative thermal expansion 

between the storage media and the tank to prevent thermal ratcheting. Cyclability, chemical and thermal 

stability, and chemical compatibility must also be evaluated to ensure that the materials need not be 

replaced during the expected lifetime of the plant, typically over 10,000 heating/cooling cycles for a 30-
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year plant life [6]. Parametric studies are often conducted to determine how various factors affect system 

performance. Examples of such factors include mass flow rate, thermophysical properties, tank height-to-

diameter ratio, and particle diameter. 

A numerical or analytical model is needed in the analysis of storage systems, particularly to 

understand performance and behavior, and to design large scale systems. Experimental prototypes are 

constructed to validate these numerical models and are therefore critical in ensuring that the model is able 

to capture the physics of the system and incorporates appropriate assumptions. To date, several 

experimental packed beds have been constructed and tested on a laboratory scale. One of the main 

reported drawbacks of construction on this scale is related to the “wall effect” phenomenon, which stems 

from the interaction of the tank wall and the packed bed media. As depicted in Figure 3, a high porosity 

region develops at the confining wall and this higher void fraction can penetrate into the bed, resulting in 

inhomogeneous and unpredictable thermal and hydraulic behavior.  

 

Figure 3. Radial void fraction distribution of a packed bed [7]. (Copyright permission in Appendix C). 

 

Several authors have investigated how the phenomenon affects the pressure drop of a packed bed 

and it is generally concluded that the tank-to-particle diameter ratio (d/Dp) is the most profound factor [7-

17], though many studies have conflicting conclusions on the exact ratio in which the wall effect comes 

into play. The phenomenon can either increase the local flow rate due to the increased porosity or it can 

reduce the local flow rate due to wall friction. Eisfeld and Schnitzlein [15] conducted a thorough 

investigation of more than 2300 experimental data points from previous studies and concluded that the 
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these two counteracting effects are strongly contingent upon the particle Reynolds number [15]. For 

streamline flow, wall friction tends to dominate whereas with more turbulent flow and therefore a thinner 

boundary layer, the increased porosity has a more prominent role. Eisfeld and Schnitzlein also concluded 

that the tank-to-particle diameter ratio is only important when it is less than 10. 

Understanding how a packed bed system behaves under varying parametric conditions has been 

the focus of several studies, and the performance of such systems has been quantified by indicators such 

as first and second law efficiencies as well as utilization ratios. These performance metrics are discussed 

in further detail in Chapter 3. Important to an analysis is also ensuring that the study incorporates realistic 

conditions that can be applied to real-world applications. In Hanchen et al. [18] for example, the 

performance results for a single charging/discharging cycle and for 20 consecutive charging/discharging 

cycles are provided. In doing so, the study demonstrated that the trends in performance between a single 

cycle and steady state can be divergent, revealing the importance of investigating a system under 

continuous cyclic operation. The need to evaluate a system under steady state conditions was 

corroborated by Bruch et al. [19] via experimental testing of a molten salt packed bed system that 

underwent multiple charge/discharge cycles. 

When air is used as the HTF, pumping power requirements can be substantial. A commonly 

employed pressure drop correlation is the Ergun equation [20], Equation 1, which demonstrates the 

dependency of pressure drop on particle diameter, porosity, and flow rate. 

∆𝑃

𝐻
= 150

(1−𝜀)2

𝜀3
𝜇𝐻𝑇𝐹𝑈

𝐷𝑝
2 + 1.75

1−𝜀

𝜀3
𝜌𝐻𝑇𝐹𝑈

2

𝐷𝑝
                                                   (1) 

The equation indicates that the pressure drop decreases as the particle diameter increases, thus a larger 

particle diameter would be ideal if the goal is to minimize the pumping requirement. The thermal 

performance improves however, when the particle diameter decreases. This is apparent when examining 

heat transfer correlations such as that provided by Wakao et al.[21] in Equation 2, 

ℎ =  
𝑘𝐻𝑇𝐹

𝐷𝑝
[2 + 1.1𝑃𝑟

1

3𝑅𝑒0.6] =  𝑘𝐻𝑇𝐹[
2

𝐷𝑝
+

1.1

𝐷𝑝
0.4 (

𝑐𝑝,𝐻𝑇𝐹𝜇

𝑘𝐻𝑇𝐹
)

1

3
(
𝐺

𝜇
)
0.6

].                           (2) 
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Therefore an optimal particle diameter would balance the effects of pressure drop and heat transfer. In the 

parametric study conducted by Hanchen et al. [18], the steady state analysis demonstrated that pumping 

work increased significantly for small particle sizes, however this undesirable effect was counteracted by 

enhanced convective heat transfer. For the smallest particle diameter under study, i.e. Dp = 2 mm, the 

pumping work was the highest at approximately 2% of the energy supplied to the tank, yet it had the 

greatest overall efficiency due to the sharper temperature front, i.e. a narrower thermocline zone, which 

allows for more efficient extraction of energy.  

The effect of particle diameter in the presence of other heat transfer fluids has also been 

evaluated, however pumping losses were neglected. Xu et al. [22] investigated the effect of particle 

diameter on a system that utilized molten salt as the HTF under discharging mode. They concluded that 

large particle diameters result in lower rates of heat transfer between the particle surface, center, and 

HTF, resulting in a thicker thermocline region and reduced discharging efficiency. The large particle 

diameter was 25 cm, which is unrealistic for packed bed systems however.  Yang et al. [23] similarly 

studied the effect of particle diameter in the presence of molten salt as the HTF, yet under charging 

conditions only. They concluded that a particle with smaller diameter reduces the rate of entropy 

generation within the system, enhances charging efficiency, and produces a sharper thermocline zone. 

Neither of these studies investigated the performance of the system under cyclic conditions, nor did they 

consider overall system efficiencies.  

 Under the given conditions of a power plant, it is necessary to understand the rate at which 

charging and discharging occurs as well as utilization of the storage system. The thermal properties of the 

storage material can affect the dynamics of these processes and are thus an essential component to study. 

Aly and El-Sharkawy [24] investigated the charging process of a packed bed and demonstrated that 

increasing the thermal conductivity of the solid storage media increases the rate of heat transfer and 

energy stored inside the bed, but only to a certain time period. Initially the high rate of heat transfer 

quickly charges the system, eventually leading to a decrease in the temperature difference between solid 
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and fluid. At a certain point in time, a low heat transfer rate starts to dominate and the temperature of the 

material with low thermal conductivity then starts to exceed that of the high thermal conductivity. 

Hanchen et al. [18] and Adebiyi et al. [25] evaluated the overall efficiency, i.e. charging and discharging, 

rather than just the charging process, and concluded that the solid media thermal conductivity has an 

insignificant influence on the performance of a system. Adebiyi et al. [25] attributed the minor difference 

in performance to the fact that intraparticle conduction was negligible, which is often the case with 

sensible heat storage systems due to the low Biot number. 

 Conduction within the individual solid and fluid phases does not account for all mechanisms of 

heat transfer within a packed bed. Other mechanisms include conduction between solid particles, film 

convection through the fluid layer in contact with the solid particles, and radiation between solid surfaces 

[26]. These additional means of heat transfer are often assimilated through the use of the effective thermal 

conductivity. Xu et al. [27] conducted a parametric study of the discharging process, comparing five 

different correlations for the effective thermal conductivity of fluid and solid phases found in the 

literature. The study showed that four of the correlations agreed well with each other, and the correlation 

that resulted in the highest values of effective thermal conductivity resulted in a slightly thicker, thus less 

ideal thermocline zone. This unfavorable effect is accredited to the fact that a higher effective thermal 

conductivity leads to enhanced thermal diffusion, causing the thermocline region to expand. They also 

evaluated the effect of changing the solid thermal conductivity to values that ranged from 0 W/m-K to 

400 W/m-K and found that a higher thermal conductivity resulted in a wider temperature gradient, 

resulting in decreased discharging efficiency, i.e. increasing the thermal conductivity from 0 to 400 W/m-

K led to efficiencies of 89.9% and 81.7%, respectively. They concluded that a low solid filler thermal 

conductivity is preferable for molten salt packed bed systems. The study did not evaluate the charging 

process nor did it mention conducting the study under steady state conditions. 

 The volumetric heat capacity was shown by Hanchen et al. [18] to have a stronger influence on 

packed bed systems than the solid thermal conductivity. The study evaluated the behavior of four 
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materials with dissimilar volumetric heat capacities subjected to 6 hour charging and 6 hour discharging 

periods. The thermocline zone of the material with the largest volumetric heat capacity advanced more 

slowly down the bed than that of the three remaining materials, resulting in less energy stored. The 

overall efficiency was slightly higher for this material since the slower moving thermocline zone did not 

reach the bottom of the tank within the allotted charging time. This results in less energy being wasted 

during the charging process. If a system must charge and discharge within a certain amount of time, the 

volumetric heat capacity can thus influence the utilization of the system. In actual solar field operation 

however, the charging and discharging process is not necessarily defined by a specific time period, but by 

a maximum cut-off temperature during charging and a minimum cut-off temperature during discharging 

[5]. In this scenario, the thermocline zone would reach the bottom of the tank, however it would take 

significantly longer for a material with high volumetric heat capacity. Thus the charging and discharging 

periods are strongly affected by the volumetric heat capacity. This phenomenon can be explained by the 

concept of the propagation velocity of the thermocline zone, vt,sens, which is defined as [28] 

𝑣𝑡,𝑠𝑒𝑛𝑠 =
𝐶𝑝,𝐻𝑇𝐹,ℎ𝜌𝐻𝑇𝐹,ℎ𝑈

𝜀𝐶𝑝,𝐻𝑇𝐹,ℎ𝜌𝐻𝑇𝐹,ℎ+(1−𝜀)𝐶𝑝,𝑠,ℎ𝜌𝑠,ℎ
                                                      (3) 

and is dependent on the physical properties of the solid and fluid phases as well as the void fraction of the 

bed. If to is the charging or discharging period, then vt,sens to is the front propagation distance. This value 

characterizes the length that the thermocline zone travels during the specified time period and provides a 

measure of the tank height required for the discharge/charge process [29]. Ideally the height of the bed 

would be larger than vt,sens to in order to fully utilize the packed bed. If the height is less than vt,sens to, then 

the bed will be completely charged before the charging time period ends and will run out of thermal 

energy before the discharging period completes.  

 Aside from the physical properties of the filler material, the particle Reynolds number, defined as 

𝑅𝑒 =  
𝜌𝐻𝑇𝐹𝑈𝐷𝑝

𝜇𝐻𝑇𝐹
=  

�̇�𝐷𝑝

𝐴𝑏𝑒𝑑𝜇𝐻𝑇𝐹
                                                           (4) 
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and hence mass flow rate, affect system performance. Equation 3 demonstrates that there is a concomitant 

increase in thermocline zone propagation velocity with an increase in superficial bed velocity. This 

indicates that for a high particle Reynolds number, a longer flow distance is needed to exchange the same 

amount of energy between HTF and storage material than that of a lower Reynolds number. Thus the 

temperature rise is more gradual for a high Reynolds number, which corresponds to an extended 

thermocline zone, potentially leading to a waste in thermal energy [28].  

The packed bed porosity is another parameter that has been studied for its effect on system 

performance. Xu et al. [30] investigated the influence on discharging efficiency and thermocline thickness 

by varying the porosity of a packed bed system from 0.1 to 0.8. The resulting discharging efficiency 

increased with increasing porosity, however the growth was marginal over the large porosity range. The 

authors concluded that beyond a small porosity value (e.g. 0.22), its effect is insignificant on the 

development of the thermocline thickness. Since the HTF can be a costly component of the storage 

system, the porosity would ideally be kept at a low value to minimize the HTF volume requirement. 

 Aside from system level analyses, several authors have conducted studies that evaluate plant level 

performance when a thermocline packed bed storage system has been integrated. Typical solar field 

operation requires that charging terminates when the outlet HTF temperature reaches a maximum 

threshold temperature that is defined by the temperature limitations of the solar field [31]. Similarly, a 

minimum cut-off temperature is imposed during the discharging process in order to maintain reasonable 

turbine efficiencies and electrical power output by sustaining a high outlet HTF temperature from the 

storage system. Though packed bed systems have the advantage of a single tank requirement, the 

thermocline zone is confined to the tank if these two cut-off criteria are induced, thus rendering a portion 

of the bed unusable. Therefore it is beneficial to design a system with conditions that promote a narrow 

thermocline zone, i.e. a high rate of heat transfer, to extend the amount of energy that can be stored before 

the maximum charging cut-off temperature is reached.  
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 During the discharging process, the HTF exits the bed at or near the hot charging inlet 

temperature, Th,HTF, and subsequently decays before discharging ceases. This attenuation of HTF 

temperature has been shown to impact plant performance, yet to a degree that is acceptable. Kelly [32] 

evaluated the performance of a power plant operating with a supercritical Rankine cycle, wherein the inlet 

turbine steam temperature decreased from 650°C to 550°C as a result of the declining HTF temperature. 

The 100°C temperature drop resulted in a 14% decrease in cycle output and a 5% decline in cycle 

efficiency. These penalties occurred near the end of the discharge period and did not show a strong impact 

on annual plant performance. Flueckiger et al. [31] conducted a plant level study of a 100 MWe power 

tower plant with a 6 hour thermocline storage system. The simulation accounted for off-design conditions, 

which occurred when the HTF temperature deviated from the hot inlet charging temperature of 600°C to a 

minimum threshold value of 473°C. Under these conditions, the thermocline system increased the annual 

capacity factor of the plant from 27.3% to 53.1% and the solar-to-electric efficiency from 7.6% to 14.7%. 

Thus SHS systems appear to be a viable option for CSP systems from a plant performance perspective. 

1.2.2 Latent Heat Storage 

Several of the trends observed in SHS packed beds are shared with LHS systems. For instance, 

system efficiency is similarly enhanced as the particle diameter and inlet HTF velocity decrease [33, 34]. 

There are additional parameters that can strongly influence the performance and behavior of LHS systems 

however, and their effects mandate judicious selection in storage media.  

 The phase change temperature is one such parameter that has been extensively studied. Wu et al. 

[34] investigated the effect of solidification temperature on the discharging efficiency of a molten salt 

packed bed system. The single cycle analysis demonstrated that discharging efficiency increases 

significantly with increase in phase change temperature. Nithyanandam et al. [35] conducted an extensive 

parametric study on high temperature packed bed LHS systems. The study showed that the phase change 

temperature must correspond to a value that is either above the discharging cut-off temperature or below 

the charging cut-off temperature to maximize usage of the potential storage capacity. Flueckiger and 
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Garimella [5] evaluated the annual performance of a CSP plant with a SHS system and with a LHS 

system. The LHS system study investigated the effect of phase change temperature on the plant’s annual 

capacity factor and thermal energy discard. The hypothetical PCM with a melting point that fell between 

the charging and discharging cut-off temperature showed a significant reduction in annual capacity factor, 

thus corroborating the results of the aforementioned study that the phase change temperature must lie 

outside of the threshold window. 

 The latent heat, L, is often investigated in its non-dimensional form as the Inverse Stefan number, 

defined as  

𝐼𝑛𝑣𝑆𝑡𝑒 =  
𝐿

𝐶𝑝(𝑇ℎ,𝐻𝑇𝐹−𝑇𝑐,𝐻𝑇𝐹)
                                                           (5) 

where Th,HTF and Tc,HTF are the charging inlet temperature and discharging inlet temperature, respectively. 

In the study by Nithyanandam et al. [35], an analysis on the effect of Inverse Stefan number showed that 

the system’s ability to use its potential storage capacity increased with decreasing latent heat. Though its 

ability to store more energy increased, the useful energy discharged from the system did not show the 

same trend.  Rather, the useful discharged energy slightly increased with increasing latent heat until a 

certain point, after which the useful energy plateaued.   

 The influence of latent heat and phase change temperature on the behavior and hence output of a 

TES system is largely related to the relative velocities of the sensible heat thermocline front, defined by 

Equation 3, and the phase change front. The velocity of the phase change front during the charging 

process is defined in Fleuckiger and Garimella [5] as 

 𝑣𝑙𝑎𝑡𝑒𝑛𝑡,𝑐ℎ =
𝐶𝑝,𝐻𝑇𝐹,ℎ𝜌𝐻𝑇𝐹,ℎ𝑈

𝜀𝐶𝑝,𝐻𝑇𝐹,ℎ𝜌𝐻𝑇𝐹,ℎ+(1−𝜀)𝐶𝑝,𝑠,ℎ𝜌𝑠,ℎ[1+
1

𝑆𝑡𝑒
(

𝑇ℎ,𝐻𝑇𝐹−𝑇𝑐,𝐻𝑇𝐹

𝑇ℎ,𝐻𝑇𝐹−𝑇𝑠𝑜𝑙𝑖𝑑𝑢𝑠,𝑃𝐶𝑀
)]

                             (6) 

and for the discharging process as  

𝑣𝑙𝑎𝑡𝑒𝑛𝑡,𝑑𝑐ℎ =
𝐶𝑝,𝐻𝑇𝐹,ℎ𝜌𝐻𝑇𝐹,ℎ𝑈

𝜀𝐶𝑝,𝐻𝑇𝐹,ℎ𝜌𝐻𝑇𝐹,ℎ+(1−𝜀)𝐶𝑝,𝑠,ℎ𝜌𝑠,ℎ[1+
1

𝑆𝑡𝑒
(

𝑇ℎ,𝐻𝑇𝐹−𝑇𝑐,𝐻𝑇𝐹

𝑇𝑙𝑖𝑞𝑢𝑖𝑑𝑢𝑠,𝑃𝐶𝑀−𝑇𝑐,𝐻𝑇𝐹
)]

 .                         (7) 
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Equations 6 and 7 reveal the dependence of the phase change front travel rate on the latent heat and phase 

change temperature. With an increase in the latent heat of fusion or a decrease in the difference between 

the incoming hot HTF temperature and solidus temperature, the travel rate of the phase change front 

during charging mode slows. Figure 4 illustrates the architecture of a LHS packed bed system during the 

charging process. The PCM melt temperature is 515°C, and Th,HTF and Tc,HTF are 565°C  and 288°C, 

respectively. The sub-solidus sensible heat thermocline region travels at a rate that is governed by 

Equation 3 while the movement of the phase change zone is subjected to the slower velocity defined by 

Equation 6. The hot zone is restricted by the movement of the phase change front, therefore it does not 

advance deep into the bed. A comparison of the top and bottom figures demonstrates the relative  

movement of each zone over time. As charging terminated, the sub-solidus sensible heat zone reached the 

bottom of the bed, the phase change front lengthened, and the hot zone only slightly expanded. Had a 

lower melting PCM been employed, the phase change front and hot zone would have advanced at a rate 

that was closer to that of the sub-solidus sensible heat zone. All three zones would have shifted further 

down the bed to a similar degree and a larger portion of the potential storage capacity would have been 

exploited by the time the saturation condition was met. 

 

Figure 4. Progression of the zones of a packed bed latent heat storage system during the charging process.  
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Figure 4 (continued) 

 

 

Alternatively, a PCM of higher phase change temperature is an advantage during the discharging 

process. This induces a faster phase change front velocity that more closely coincides with the sub-

sensible heat thermocline zone travel rate. The HTF exits the bed at the phase change temperature for an 

extended period of time and this elevated temperature is more thermodynamically favorable than a PCM 

of lower solidification temperature. Thus LHS systems are plagued by conflicting effects that 

simultaneously inhibit both maximum storage and maximum utilization of the stored energy.  

1.2.3 Comparative Studies of SHS and LHS Packed Bed Systems 

 Several studies have parametrically evaluated the dynamic thermal behavior and performance of 

medium to high temperature LHS and SHS packed bed storage systems individually, yet few make a 

direct comparison of both systems. As previously mentioned, Flueckiger and Garimella [5] conducted a 

plant level study that evaluated and compared the annual performance of both SHS and LHS systems with 

a single PCM and cascaded PCMs. The investigation concluded that a single PCM does not demonstrate 

enhanced annual plant output, however the use of multiple PCMs with carefully selected melting points 

does show some improvement over SHS systems. The characteristics of the systems in the analysis were 

based on those of the packed bed system in Pacheco et al. [36]. A hypothetical PCM with the same 
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thermal properties as the SHS filler material was used in the study in order to provide an objective 

assessment of the storage capacity added by the phase change process.  

 An exergy analysis was conducted in Bindra et al. [4] and used to compare the overall exergetic 

efficiency of LHS and SHS systems of constant tank size and velocity. Important in maximizing the 

storage and recovery of exergy from a system is the development of a steep temperature gradient within 

the thermocline zone. As both axial dispersion and intra-particle diffusion influence the expansion of the 

thermal gradient, the study demonstrated that the exergy efficiency of SHS systems can be increased by 

minimizing axial dispersion and increasing intra-particle diffusion. For LHS systems, the study focused 

on the impact of the latent heat and phase change temperature of PCMs since these two parameters have a 

stronger influence on performance than axial dispersion and intra-particle diffusion. For lower values of 

the latent heat of fusion, a narrower thermocline zone is produced, resulting in less exergy destruction and 

hence higher exergetic efficiencies. The same trend applies to the phase transition temperature, wherein 

this value should be low with respect to the inlet charging temperature for a steeper temperature gradient, 

but only to an optimal value, below which the exergy efficiency decreases. The authors concluded that 

high temperature sensible heat storage systems can provide higher energy density and higher exergy 

recovery than latent heat storage systems. 

 In Adebiyi [37], a high temperature SHS system was compared to single-PCM LHS systems of 

varying latent heat and phase change temperature. For the same size tank, the LHS enhanced the storage 

capacity, however a comparison of the overall first and second-law efficiencies revealed that the LHS 

system was not always thermodynamically superior to the SHS system. The enhancement in performance 

was largely a function of the phase change temperature and latent heat as well as the inlet temperature of 

the HTF. The first-law analysis alone was not sufficient to come to these conclusions, therefore the 

second-law efficiency was a better indicator of performance.   

 The following study employs the second-law efficiency to evaluate overall system performance. 

It also adopts the capacity ratio and utilization ratio to understand the extent to which the potential storage 
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capacity of the sensible heat and latent heat media is exploited. These two ratios isolate the influence of 

the storage media on system output from the additional storage capacity that is possessed by the HTF. 

Hypothetical LHS systems are analyzed and compared to systems that may be realistically encountered to 

understand how their performance and output may deviate.  Chapter 2 discusses the experimental test 

beds and numerical model, chapter 3 evaluates system performance, and the study concludes with an 

economic assessment in chapter 4.  
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CHAPTER 2: EXPERIMENTAL SYSTEM AND MODEL VALIDATION 

 

2.1 Introduction 

In order to evaluate the performance and economics of both SHS and LHS systems, a thermal 

performance model was developed and validated with the aid of experimental data from laboratory-scale 

systems that were constructed in USF’s Clean Energy Research Center (CERC) facility. The SHS packed 

bed system was initially constructed as a joint effort with SunBorne Energy Inc. to develop a low-cost 

storage solution for central receiver CSP plants that employ air as the HTF. The LHS packed bed system 

and PCM pellets were fabricated by CERC student Tanvir Alam, and were funded through E·ON SE as 

an initiative to develop an economically feasible storage technology for medium temperature CSP plants. 

The following sections expound upon the elements of both experiments as well as the validated model. 

2.2 General Packed Bed Model  

In order to calculate the transient temperature distribution of HTF and storage media within the 

packed bed system, the Dispersion-Concentric (DC) model was employed. This model is based on the 

assumption that the fluid exhibits dispersed plug flow and that intraparticle radially concentric conduction 

occurs in the solid phase [21]. To simplify the analysis and minimize computational time, it is assumed 

that the solid particles are identical and isotropic, and the bed porosity is uniform, implying that the HTF 

temperature and velocity are homogeneously distributed among the storage medium. Thus the system can 

be modeled as a one-dimensional domain, which is shown as an acceptable assertion based on the  

 

1
 Portions of this chapter were published in Energy Procedia [94]. Copyright permission is included in Appendix C. 
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validation results. With this underlying assumption, the energy equation must only be solved for a single 

sphere at each axial position of the tank bed, given that its temperature profile represents that of all other 

spheres at the same axial location. Each sphere is modeled as axisymmetric and discretized into equally 

spaced radial nodes as illustrated in Figure 5.   

 Heat losses from the top and bottom of the tank were neglected and it was assumed that the HTF 

is the only medium that exchanges energy with the environment through the tank wall. This heat loss is 

accounted for with an overall heat transfer coefficient, Uw. In Jalalzadeh-Azar et al. [38] the role of 

radiation in a high temperature packed bed with inlet HTF temperature of 900 °C was shown to be 

insignificant, thus radiation between particle and HTF was also ignored in the current model.  

 

 

 

 

 

 

 

 

 

 

Figure 5. Schematic of the Dispersion-Concentric model numerical domain. Equation 8 determines the 

fluid temperature in the global domain on the left side of the figure. Equation 9 determines the solid 

temperature in the local domain of the sphere on the right side of the figure. Δr represents the distance 

between radial nodes within each sphere. The boundary condition of Equation 12 couples the two 

domains. 

 

In adopting the above assumptions, the governing energy equations for the fluid and solid phases 

are defined respectively as 

𝑘𝑃𝐶𝑀
𝜕𝑇𝑃𝐶𝑀
𝜕𝑟

= ℎ𝑝 𝑇𝐻𝑇𝐹 − 𝑇𝑃𝐶𝑀,𝑟= 𝑅𝑜  
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𝜕𝑇𝐻𝑇𝐹

𝜕𝑡
= 𝛼𝑎𝑥

𝜕2𝑇𝐻𝑇𝐹

𝜕𝑥2 −
𝑈

𝜀

𝜕𝑇𝐻𝑇𝐹

𝜕𝑥
−

ℎ𝑣

𝐶𝑝,𝐻𝑇𝐹𝜌𝐻𝑇𝐹𝜀
 𝑇𝑆,𝑅𝑜 − 𝑇𝐻𝑇𝐹 −

𝑈𝑤𝐷𝜋

𝐶𝑝,𝐻𝑇𝐹𝜌𝐻𝑇𝐹𝜀𝐴𝑏𝑒𝑑
(𝑇𝑖𝑛𝑓 − 𝑇𝐻𝑇𝐹)     (8) 

and 

𝜕𝑇𝑆

𝜕𝑡
= 

𝑘𝑆

𝜌𝑆𝐶𝑝,𝑆
(
𝜕2𝑇𝑆

𝜕𝑟2 +
2

𝑟

𝜕𝑇𝑆

𝜕𝑟
)  .                                                     (9) 

For intermediate and high flow rates, the second derivative 
𝜕2𝑇𝐻𝑇𝐹

𝜕𝑥2  can be small as compared to the other 

terms in Equation 8 when the Peclet number is high, resulting in low thermal diffusivity. The first term on 

the right hand side of Equation 8 could therefore be neglected [21, 39] though it was retained in the 

analysis to accommodate the wide range of Reynolds numbers that are used in the study. The proposed 

criterion for neglecting axial dispersion was provided in [37] as 

𝑃𝑒 =  
𝜌𝑓𝑈𝐷𝑝

𝜇𝑓
𝑃𝑟𝑓 > 50.                                                          (10) 

The boundary conditions for the solid phase are defined as 

𝜕𝑇𝑆

𝜕𝑟
= 0, 𝑎𝑡 𝑟 = 0                                                                (11)  

𝑘𝑆
𝜕𝑇𝑆

𝜕𝑟
= ℎ𝑝 𝑇𝐻𝑇𝐹 − 𝑇𝑆,𝑟= 𝑅𝑜

 , 𝑎𝑡 𝑟 = 𝑅𝑜                                            (12) 

and for the fluid phase as: 

𝜕𝑇𝐻𝑇𝐹

𝜕𝑥
= 0, 𝑎𝑡 𝑥 = 0                                                           (13) 

𝑇𝐻𝑇𝐹 = 𝑇𝑖𝑛, 𝑎𝑡 𝑥 = 𝐻.                                                          (14) 

 To couple the fluid and solid phases thus capturing the exchange of energy between a single 

sphere and the heat transfer fluid, an empirical equation for the particle convective heat transfer 

coefficient developed by Wakao et al. [40] was applied: 

ℎ𝑝 =
𝑘𝑃𝐶𝑀𝑁𝑢

𝐷𝑝
=

𝑘𝑃𝐶𝑀

𝐷𝑝
(2 + 1.1 (𝑅𝑒0.6𝑃𝑟

1

3)).                                        (15) 

The correlation is valid in the range of Reynolds number from 15 to 8500. Although the correlation is 

based on several experiments conducted with Prandtl numbers less than unity, the equation has proven 

valid with molten salts which bear larger Prandtl numbers. 
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 To determine the volumetric heat transfer coefficient, hv, the particle heat transfer coefficient is 

multiplied by the specific surface area of the bed, ap. For spheres, this is defined by the following 

expression [38] 

ℎ𝑣 = 𝑎𝑝ℎ𝑝  =
6(1−𝜀)

𝐷𝑝
ℎ𝑝.                                                          (16) 

To estimate the heat lost from the system to the ambient, an overall heat transfer coefficient is 

defined in terms of the resistances due to convection between HTF and the tank wall, conduction within 

the tank wall, and conduction within the insulation [18, 41] 

1

𝑈𝑤
= 

1

ℎ𝑖
+ 𝑟𝑏𝑒𝑑 ∑

1

𝑘𝑗
ln (

𝑟𝑗+1

𝑟𝑗
)𝑛

𝑗=1                                                  (17) 

where j = 1 represents the inner tank wall, (r1 =  rbed), and j = 3 represents the outer layer of insulation (r3 

= router). The inner wall heat loss coefficient, hi, is provided by Beek [42] as  

ℎ𝑖 =
𝑘𝐻𝑇𝐹

𝐷𝑝
( 0.203𝑅𝑒1/3𝑃𝑟1/3 + (0.220𝑅𝑒0.8𝑃𝑟0.4)).                                (18) 

Heat transfer due to natural convection at the outer wall was neglected.   

The assumption of a radially concentric temperature profile is physically impractical as heat 

conduction would not occur across the particle [21]. To account for this limitation, solid phase heat 

conduction is superficially included in the fluid thermal dispersion term, αax, of Equation 8 through an 

effective thermal conductivity [21]. Solid phase conduction is but one phenomenon that contributes to 

thermal dispersion of the fluid phase and the effective thermal conductivity, keff, compensates for all 

mechanisms. The effective conductivity is often defined in terms of the thermal properties of the 

individual phases as well as the geometry of the bed, and it includes two contributions: the stagnant fluid 

conductivity, and conductivity due to macroscopic flow effects [7]. The stagnant fluid effects correspond 

to the heat transfer mechanisms as mentioned in Chapter 1, including conduction through the fluid phase, 

axial conduction through the solid, conduction through contact points, and radiation between solid 

surfaces [7, 26]. The macroscopic effects that contribute to thermal dispersion are associated with the 

behavior of the flow and are related to the Peclet number, which is the ratio of the rate of advection to the 
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rate of thermal diffusion of the flow. For the packed bed model, the effective thermal conductivity of the 

fluid phase was based on a correlation discussed in Gonzo [31, 43] as 

𝑘𝑒𝑓𝑓 = 𝑘𝐻𝑇𝐹 [
1+2𝛽𝜙+ 2𝛽3−0.1𝛽 𝜙2+𝜙30.05exp(4.5𝛽)

1−𝛽𝜙
]                                     (19) 

where φ = 1 – ε and β = (kPCM  - kHTF)/(kPCM  + 2kHTF). 

  The governing equations were solved in Matlab using direct finite difference approximation 

under the fully implicit scheme with Nx nodes in the axial direction and Rx nodes within each sphere. 

First order upwind scheme was used to discretize the temporal and advective term in Equation 8, while 

second order central differencing was used to discretize the diffusion term: 

𝑇𝐻𝑇𝐹𝑛
𝑖+1−𝑇𝐻𝑇𝐹𝑛

𝑖

∆𝑡
= 𝛼𝑎𝑥

𝑇𝐻𝑇𝐹𝑛+1
𝑖+1 −2𝑇𝐻𝑇𝐹𝑛

𝑖+1+𝑇𝐻𝑇𝐹𝑛−1
𝑖+1

∆𝑥2  −
𝑈

𝜀

𝑇𝐻𝑇𝐹𝑛
𝑖+1−𝑇𝐻𝑇𝐹𝑛−1

𝑖+1

∆𝑥
−

ℎ𝑣

𝐶𝑝,𝐻𝑇𝐹𝜌𝐻𝑇𝐹𝜀
(𝑇𝑆,𝑅𝑜𝑛

𝑖 − 𝑇𝐻𝑇𝐹𝑛
𝑖+1) −

𝑈𝑤𝐷𝜋

𝐶𝑝,𝐻𝑇𝐹𝜌𝐻𝑇𝐹𝜀𝐴𝑏𝑒𝑑
(𝑇𝑖𝑛𝑓 − 𝑇𝐻𝑇𝐹𝑛

𝑖+1)                                                  (20) 

 The above equation was applied to nodes 2 through (Nx-1). The first fluid boundary condition, 

Equation 13, was applied to node Nx via the following discretization by setting (Nx-1) = (Nx+1): 

𝑇𝐻𝑇𝐹𝑁𝑥
𝑖+1−𝑇𝐻𝑇𝐹𝑁𝑥

𝑖

∆𝑡
= 𝛼𝑎𝑥

2𝑇𝐻𝑇𝐹𝑁𝑥−1
𝑖+1 −2𝑇𝐻𝑇𝐹𝑁𝑥

𝑖+1

∆𝑥2  −
𝑈

𝜀

𝑇𝐻𝑇𝐹𝑁𝑥
𝑖+1−𝑇𝐻𝑇𝐹𝑁𝑥−1

𝑖+1

∆𝑥
−

ℎ𝑣

𝐶𝑝,𝐻𝑇𝐹𝜌𝐻𝑇𝐹𝜀
(𝑇𝑆,𝑅𝑜𝑛

𝑖 − 𝑇𝐻𝑇𝐹𝑁𝑥
𝑖+1) −

𝑈𝑤𝐷𝜋

𝐶𝑝,𝐻𝑇𝐹𝜌𝐻𝑇𝐹𝜀𝐴𝑏𝑒𝑑
(𝑇𝑖𝑛𝑓 − 𝑇𝐻𝑇𝐹𝑁𝑥

𝑖+1) .                                             (21) 

The solid equation, Equation 9, was discretized as follows  

𝑇𝑆𝑟
𝑖+1−𝑇𝑆𝑟

𝑖

∆𝑡
=  

𝑘𝑆

𝜌𝑆𝐶𝑝,𝑆
(
𝑇𝑠𝑟+1

𝑖+1 −2𝑇𝑠𝑟
𝑖+1+𝑇𝑠𝑟−1

𝑖+1

∆𝑟2 +
2

𝑟

𝑇𝑠𝑟−1
𝑖+1 −𝑇𝑠𝑟+1

𝑖+1

2∆𝑟
)                               (22) 

and was applied to nodes 2 through (Rx-1). The first boundary condition of the solid, Equation 11, was 

applied to the center of the sphere at Rx by employing  L’Hȏpital’s rule [44]: 

2

𝑟

𝜕𝑇

𝜕𝑟𝑟=0
= 2

𝜕

𝜕𝑟
(
𝜕𝑇

𝜕𝑟
)

𝜕

𝜕𝑟
(𝑟)

= 2
𝜕2𝑇

𝜕𝑟2 .                                                      (23) 

Therefore the energy equation applied to the center of the sphere, at r = Rx is  

𝜕𝑇𝑆

𝜕𝑡
= 

3𝑘𝑆

𝜌𝑆𝐶𝑝,𝑆
(
𝜕2𝑇𝑆

𝜕𝑟2 ) .                                                            (24) 
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 At the center node, (r+1) = (r-1), therefore the resulting discretization is 

𝑇𝑆𝑅𝑥
𝑖+1−𝑇𝑆𝑅𝑥

𝑖

∆𝑡
=  

6𝑘𝑆

𝜌𝑆𝐶𝑝,𝑆
(
𝑇𝑠𝑅𝑥−1

𝑖+1 −𝑇𝑠𝑅𝑥
𝑖+1

∆𝑟2 ) .                                                (25) 

The second boundary condition of the sphere, Equation 12, applies to the surface of the sphere: 

𝑘𝑠
𝑇𝑆1

𝑖+1−𝑇𝑆2
𝑖+1

∆𝑟
= ℎ𝑝(𝑇𝐻𝑇𝐹𝑛

𝑖+1 − 𝑇𝑆1
𝑖+1).                                             (26) 

The simulation is designed to calculate the axial temperature profile and quantity of energy stored within 

the filler material and HTF. Using this data, the net energy and exergy in and out of the system, first and 

second law efficiencies, and utilization factors are also determined.  

2.2.1 Latent Heat Storage Packed Bed Model  

 The Dispersion-Concentric model can be used to simulate both LHS and SHS packed bed 

systems. Similar to the SHS model, the LHS model predicts the temperature profile of HTF and 

spherically shaped storage media, however the phase change process must be integrated. The nonlinear 

nature of the phase change phenomenon increases the complexity of the problem due to the moving 

interface between solid and liquid phases. For instance,  a one-dimensional semi-infinite solidification 

problem with a single phase change temperature exhibits two distinct domains separated by the solid-

liquid interface, as depicted in Figure 6. Within each respective domain, the solution of the solid 

temperature, Ts, and liquid temperature, TL, must be calculated according to the following governing 

energy equations, assuming constant properties [45]: 

𝜕2𝑇𝑠(𝑥,𝑡)

𝜕𝑥2 =
1

𝛼𝑠

𝜕𝑇𝑠(𝑥,𝑡)

𝜕𝑥
     in 0 < x < s(t),  t > 0                                           (27) 

𝜕2𝑇𝐿(𝑥,𝑡)

𝜕𝑥2 =
1

𝛼𝑠

𝜕𝑇𝐿(𝑥,𝑡)

𝜕𝑥
  in s(t) < x < ∞, t > 0                                            (28) 

The solution mandates the use of a moving boundary condition, known as the Stefan condition, which 

serves in determining the location of the solid front, s(t): 

𝑘𝑠
𝜕𝑇𝑠

𝜕𝑥
− 𝑘𝐿

𝜕𝑇𝐿

𝜕𝑥
= 𝜌𝐿

𝜕𝑇𝐿(𝑥,𝑡)

𝜕𝑥
   at x = s(t),  t > 0                                        (29) 

where L is the latent heat of solidification in J/kg.  
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 Equation 29 describes the energy balance at the interface, wherein the difference in heat flux 

across the two domains is equivalent to the energy liberated due to the interface displacement per unit 

area per unit time [45, 46]. Exact solutions are limited in scope to semi-infinite problems with constant 

thermal properties in each phase as well as constant initial and imposed temperatures [46]. Though 

analytical solutions are not as restricted in nature, they are trumped by the ease and broad scope of 

numerical approximations, which can accommodate complex physical factors such as nucleation, 

variation in phase-change temperature, or multiple phase change fronts. 

 
Figure 6. One-dimensional solidification. Ti represents the initial liquid temperature and To represents the 

boundary surface. Adapted from [45]. 

 

 

 Several numerical algorithms are practiced in the literature and can be classified as either front 

tracking methods or fixed domain methods [47]. Front tracking methods rely on techniques that 

continuously locate the moving interface. This can be enacted through a deforming mesh which ensures 

that the front always lies on a node point. The moving interface can also be located with fixed mesh 

methods, in which interpolation is used to estimate the location of the front, or the time step can be varied 

to ensure that the interface falls on a node [45].  

 Alternatively, in fixed domain methods the governing energy equation can be applied to the entire 

domain and there is no need to apply the Stefan condition, thus the interface location is a by-product of 

the solution rather than a requirement [48]. Several fixed domain methods are available including 



www.manaraa.com

25 

 

Enthalpy based formulations, the Apparent heat capacity method, Fictitious heat flow, and the Freezing 

index method [48]. To account for the phase change process within the PCM capsules in the current 

study, the Apparent heat capacity method was employed. This technique is advantageous in that it does 

not require modification of the Dispersion-Concentric energy equations. It simply captures the storage 

and release of latent heat by augmenting the heat capacity over a temperature range. The value of the 

apparent, or effective, heat capacity depends on the method or function used to characterize the shape of 

the apparent heat capacity curve. Differential scanning calorimetry (DSC) is one method that can be used 

to derive an apparent heat capacity function. The measured heat flow data of a sample during melting and 

solidification can be equated to an apparent heat capacity via the following equation:  

𝑐𝑝,𝑎𝑝𝑝(𝑇) =  
𝑞(𝑇)

𝑚𝑎𝑠𝑠𝑃𝐶𝑀𝜃
+ 𝑐𝑝,𝑠𝑜𝑙𝑖𝑑                                                      (30) 

where q(t) is the heat flow of the sample obtained from the DSC, and θ is the ramping rate. Though this 

approach is valuable in providing data that is true to the material, it has been demonstrated by Arkar and 

Medved [49] that its accuracy in predicting the charging and discharging temperatures of a system is 

largely dependent on the heating rate, θ. This imposes a difficulty for measurements involving high 

melting temperature salts that exhibit high vapor pressure and therefore cannot undergo low heating rates 

due to evaporation of the sample. If the heat flow data are not readily available, the apparent heat capacity 

curve can be approximated by one of numerous equations that are found in the literature. Several of these 

equations are provided in Table 1. 

 In Alisetti and Roy [50], four different apparent heat capacity equations, Equations 31-33 and 36, 

were employed to simulate melting in a PCM slurry. The authors found that the greatest deviation 

between each of the four functions was no more than 4% and concluded that the melting point and 

melting temperature range was critical to modeling, rather than the shape of the curve. The results were 

not compared to experimental values due to limited availability of data and there was no discussion on the 

extent to which the melting temperature range impacted the results.  
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Table 1. Apparent heat capacity functions. 

Equation Equation Title Eqn # Ref. 

𝐶𝑝𝑎𝑝𝑝 = 𝐶𝑝𝑠 + [2 (
𝐿

∆𝑇2
−

𝐶𝑝𝑠

∆𝑇
)](𝑇 − 𝑇𝑠) Right triangle (31) [50] 

𝐶𝑝𝑎𝑝𝑝 = 𝐶𝑝𝑠 + [2 (−
𝐿

∆𝑇2 +
𝐶𝑝𝑠

∆𝑇
)](𝑇 − 𝑇𝐿) Left triangle (32) [50] 

𝐶𝑝𝑎𝑝𝑝 = 𝐶𝑝𝑠 + [(
𝜋

2
) (

𝐿

∆𝑇2 − 𝐶𝑝𝑠)] 𝑠𝑖𝑛𝜋[
𝑇 − 𝑇𝑆
∆𝑇

] Sine curve (33) [50] 

𝐶𝑝𝑎𝑝𝑝 = 𝐶𝑝𝑠 + 𝑎𝑒−0.5(
𝑇−𝑇𝑚𝑒𝑙𝑡

𝑏
)2 Gaussian (34) [51-53] 

𝐶𝑝𝑎𝑝𝑝 = 𝐶𝑝𝑠 + (𝐶𝑝𝐿 − 𝐶𝑝𝑠) ∙
1

1 + 𝑒−𝛼(𝑇−𝑇𝐿)
+

𝐿𝛼

𝑒−𝛼(𝑇−𝑇𝐿) + 𝑒𝛼(𝑇−𝑇𝐿) + 2
 

Logistic 

Function 
(35) [54] 

𝐶𝑝𝑎𝑝𝑝 =
𝐶𝑝𝑠 + 𝐶𝑝𝐿

2
+

𝐿

𝑇𝐿 − 𝑇𝑠
 Rectangular (36) [55, 56] 

  

 In Lamberg et al. [51], the rectangular function, Equation 36, was used to calculate the apparent 

heat capacity of paraffin wax during melting and solidification in a rectangular container with and without 

fins. Two temperature ranges were induced for estimation of the function, one based on a 2°C range, and 

the other based on a 7°C range. Cooling and heating DSC curves with a ramping rate of 2°C/min were 

additionally employed to model the PCM with the enthalpy method. The study found that the results were 

similar between all three simulation methods, however the apparent heat capacity method with the narrow 

phase change range produced the most precise results when compared to experimental data. 

 Based on these previous studies, it can be ascertained that the shape of the apparent heat capacity 

function need not be emphasized, and that the phase change temperature and latent heat play a greater role 

in influencing the results. In order to validate this assumption for salts with higher phase transition 

temperature and to determine the most appropriate apparent heat capacity function for use in the model, 

three functions were employed: a DSC curve, the logistic function, and the rectangular function. The DSC 

curve was also used to evaluate the melting point and latent heat of the PCM. The measured HTF 

temperature of a laboratory-scale prototype LHS system, as discussed in Section 2.3.2, was used to 

validate the LHS model and evaluate each of the three apparent heat capacity functions.  
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2.3 Model Validation 

2.3.1 Sensible Heat Storage Model Validation 

2.3.1.1 SHS Pilot-Scale System Design and Construction 

In order to validate the numerical model and explore the use of a low-cost SHS media proposed 

by SunBorne Energy, Inc., a 36 kWhth packed bed system was designed and constructed. This storage 

capacity is based on an operating temperature range between ambient and 500°C. The filler media 

consists of crushed hematite, a mineral ore that was mined by the Minnesota Department of Natural 

Resources and purchased from Midland Research Center. As an unprocessed ore, the material ranged in 

composition from high grade to low grade hematite and included fine-grained silica as well as small 

amounts of iron oxides and iron hydroxides. Nominally sized 2 inch (50.8 mm) particles were selected for 

the packed bed experiment. In order to minimize the wall effect by meeting the tank-to-particle diameter 

ratio criteria of 10 as specified in [15], a bed diameter of 28 inches (0.610 m) was initially chosen. The 

tank height was selected as 48 inches (1.219 m). A schematic of the final design is presented in Figure 7 

and the system components are provided in Table 2.  

 

Figure 7. Prototype SHS packed bed system design. 
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Due to restrictions in the availability of storage media, the final bed diameter and height were 

limited to 0.445 m and 0.889 m, respectively. A flexible ceramic wool insulation was used to line the 

inside of the tank and compensate for the difference in tank diameter and bed diameter. The resulting 

insulation thickness was 5.25 inches (0.133 m) on the inside of the tank and an additional 2 inches (50.8 

mm)  lined the outside. The tank was divided into two 24 inch high flanged sections in order to facilitate 

ore placement and removal. Two 12 inch tall conical entrance plenums were placed above and below the 

bed to aid in transitioning from the large tank diameter to the smaller entrance piping diameter. In order to 

simulate both charging and discharging mode of a high temperature system, two stainless steel heater 

boxes were installed at the top and bottom of the system. A 9.53 mm thick perforated carbon steel plate 

with 12.7 mm diameter holes and 48% open area was used to support the pellets. The packed bed support 

plate was designed by first assuming a 60 degree staggered pattern, which is one of the strongest 

configurations of perforated plates. The maximum allowable bending stress of carbon steel at 400°C [52] 

was multiplied by a perforated plate modified strength coefficient in order to calculate the plate’s 

thickness [53]. The strength coefficient was based on a ½ inch hole diameter and 11/16
th
 inch pitch, which 

results in an open area of 48%. Stainless steel wire mesh was placed on top of the plate to prevent small 

particles from falling into the lower plenum. The tank, plenums, and packed bed plate were coated with a 

high temperature paint to minimize corrosion. 

Flow uniformity was a concern given that 90 degree elbows were placed immediately adjacent to 

the entrance plenums. As fluid enters an elbow, the centrifugal force that is generated at the bend induces 

a radial pressure gradient that distorts the flow [54, 55]. In order to simplify the analysis, the numerical 

model idealizes the flow as uniform across the bed entrance, therefore the experimental inlet conditions 

should theoretically mimic this situation in order to validate the model. Thus extensive entrance length 

would preferably be incorporated in order to allow the flow to straighten before entering the packed bed. 

Since the system was restricted in height by the building’s infrastructure, the required entrance length 

could not be achieved and flow conditioners were constructed in an attempt to minimize the non-uniform 
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nature of the flow. Several flow conditioner  designs were tested on a small-scale experimental system 

including diffusers, tube bundles, and NEL conditioners. Figure 8 shows the final diffuser plate design 

that was installed in the pilot-scale system at the entrance to the lower plenum. This aided in 

redistributing the flow when air entered the system from below, however additional measures were 

needed for the upper plenum. The reason that the diffuser plate did not work for the top of the system is 

unknown, though the combined use of the perforated packed bed plate and diffuser plate may have 

synergistically minimized flow maldistribution at the bottom of the system. Though the flow was not 

uniform at the top bed entrance, an even flow distribution developed after the HTF penetrated further into 

the bed and the validation results were not heavily influenced by this effect. Further details of the flow 

conditioner design and experiments are provided in the appendix, section A.1. 

Table 2. Experimental system components. 

Component Description 

Entrance piping 4” diameter, 60” length, 10 gauge, carbon steel  

Heater box 304 Stainless steel 

Elbow/Bed piping 304 Stainless steel, 6” diameter 

Flow conditioner 304 Stainless steel, 6” diameter, 3/8” thickness 

Packed bed plate 3/8” thick carbon steel, ½” diameter holes, 11/16” pitch 

Tank 1/8” thick carbon steel, 48” height 

Entrance plenum 1/8” thick carbon steel, 6”x28” diameter 

Averaging pitot tube Omega Instruments FPT-6100 High accuracy pitot tube; accuracy = ±2% of rate, 

repeatability = ±0.1%. 

Digital manometer Dwyer Mark II, 0-1” W.C. range; accuracy = ±0.5% of F.S. 

Thermocouples Omega Instruments- XCIB, High temperature Inconel overbraided ceramic fiber 

insulated; accuracy is greater of 2.2°C or ± 0.75% of reading. 

Blower Dayton ¼ hp blower, model #1TDT4 

 

 

 

 

 

 

 

 

 

Figure 8. Final flow conditioner design. The conditioner was implemented at the bottom of the entrance 

plenum at the discharging inlet in the prototype system. 
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Air and solid temperature were measured with k-type Omega thermocouples. The thermocouple 

wires were insulated with a flexible Inconel overbraid ceramic fiber to withstand the high system 

temperature. The thermocouples used for air temperature measurement were equipped with a perforated 

hood to protect the exposed beaded wire junction, which allowed them to be inserted within the voids of 

the bed in order to measure air temperature alone. Unshielded, exposed beaded wire junction 

thermocouples were placed inside a hole drilled to the center of the ore to measure the ore temperature. 

Figure 9 provides a thermocouple location schematic for the packed bed. There were 5 rows located down 

the vertical axis of the bed. Each of these five rows consisted of 5 equally-spaced thermocouples across 

the bed diameter to measure air temperature, and one centrally located thermocouple to monitor solid 

temperature. Five thermocouples were placed in a horizontal plane in a cross configuration in each of the 

upper and lower plenums to measure air temperature entering and exiting the bed. Data acquisition was 

carried out via Labview SignalExpress and temperature data was monitored and recorded every 60 

seconds.  

Figure 9. Schematic of thermocouple location within the packed bed and image of thermocouple 

placement in the experimental system. Though not depicted in the figure, the center air thermocouple is 

adjacent to the solid thermocouple. 

  

 A = air thermocouple 

R = solid thermocouple 
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A pressure tap was installed in each of the plenums and several taps spanned the height of the 

tank to measure the packed bed pressure drop, which was measured with a digital manometer. The same 

manometer was used in conjunction with an averaging pitot tube to measure the velocity in the entrance 

pipe before it entered the charging and discharging heaters. The entrance pipe’s length was sized such that 

it met upstream and downstream length requirements of the pitot tube. In order to size the pitot tube and 

digital manometer, the system’s total static pressure was first estimated by calculating the pressure drop 

across all system components as defined in [56].  The air entered the entrance pipe at room temperature, 

thus the density of ambient air and the pipe area were used to calculate the mass flow rate entering the 

system. Figure 10 provides the final system setup. 

 

Figure 10. Completed pilot-scale packed bed storage system. 

 

The system was operated under various mass flow rates, and charging and discharging inlet 

temperatures for the heat transfer experiments. The uncertainty in the experimental results was calculated 

by determining the systematic error and random error of four different experimental runs under the same 

operating conditions. The resulting uncertainty in experimental temperature was 4.6%. Before modeling 

the system, the characteristics of the particles and packed bed must first be defined. The following 
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discussion illuminates the methodology in evaluating these parameters including sphericity, equivalent 

particle diameter, and porosity. It also entails an analysis on the pressure drop of the packed bed.  

2.3.1.2 Pressure Drop Analysis and Determination of Packed Bed Parameters 

Within packed bed systems, pressure drop pumping losses can be significant and must be known 

to appropriately size system pumps and blowers. Thus many studies focus on developing pressure drop 

correlations which are based on the key parameters that affect the transport properties of a system. These 

parameters can be optimally chosen such that they minimize pressure losses without compromising heat 

transfer and efficiency. 

Of the various pressure drop correlations that have been presented, the Ergun equation, Equation 

37, is one of the most widely adopted [20]: 

∆𝑃

𝐻
= 𝐴

(1−𝜀)2

𝜀3
𝜇𝐻𝑇𝐹𝑈

𝐷𝑝
2 + 𝐵

1−𝜀

𝜀3
𝜌𝐻𝑇𝐹𝑈

2

𝐷𝑝
                                                  (37) 

where the coefficient A is 150 and B is 1.75. 

In Ergun’s seminal publication, previous theories and equations on pressure losses through 

packed beds were utilized in conjunction with experimental data to establish the above relationship. The 

first term on the right-hand side represents viscous energy losses that dominate during laminar flow and 

the second term accounts for kinetic losses that govern in the turbulent regime. Experiments used in the 

development of the correlation included particles of various shapes such as spheres, cylinders, tablets, and 

crushed solids [20]. The factors considered in the analysis were fluid superficial bed velocity, particle 

diameter, fluid viscosity and density, and fractional void volume. The correlation should be valid for 

hydraulic particle Reynolds numbers between 1 and 3000. The hydraulic Reynolds number differs from 

the particle Reynolds number that is typically used, in that it has a dependence on the void fraction. The 

hydraulic particle Reynolds number and particle Reynolds number are defined respectively as  

𝑅𝑒𝑝,ℎ =
𝜌𝑈𝐷𝑝

𝜇(1−𝜀)
 , and                                                             (38) 

𝑅𝑒𝑝 =
𝜌𝑈𝐷𝑝

𝜇
 .                                                                   (39) 
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Ergun’s equation has been successfully employed to predict the pressure drop of packed beds 

filled with regular-shaped spherical particles [10, 57, 58]. To develop a more accurate prediction of  

pressure drop for particle shapes that deviate from spherical, numerous correlations have also been 

proposed, some of which simply alter the constants A and B, or modify other bed parameters. 

Modification has also been made by incorporating the shape factor, or particle sphericity, which is a 

measure of the degree to which a particle’s shape approaches the shape of a sphere. It does not necessarily 

define the shape, but it describes the effect that the shape has on the hydrodynamic behavior of the bed 

[59]. The sphericity is defined as [60] 

𝜓 =  
𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑜𝑓 𝑠𝑝ℎ𝑒𝑟𝑒 𝑜𝑓 𝑒𝑞𝑢𝑎𝑙 𝑣𝑜𝑙𝑢𝑚𝑒 𝑡𝑜 𝑡ℎ𝑒 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒

𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑎𝑟𝑒𝑎 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒
= 

𝜋1/3 6𝑉𝑝 
2/3

𝐴𝑝
                         (40) 

Pressure drop correlations are dependent on the particle diameter, Dp, which is equal to the 

diameter of the particle if it is a sphere. If the particle is non-spherical, an equivalent particle diameter 

must be used. In Ergun’s correlation this is defined as the Sauter-diameter, which is the diameter of a 

sphere with the same volume-to-surface area ratio as a non-spherical particle:  

𝐷𝑠𝑑 =
6𝑉𝑝

𝐴𝑝
.                                                                       (41) 

Without knowing particle surface area, the Sauter-diameter cannot be determined, therefore an 

alternative equivalent particle diameter by volume, Dv, defined as the diameter of a sphere having the 

same volume as the given particle, can be used:  

𝐷𝑣 = (
6

𝜋
𝑉𝑝)

1/3 = 
6𝑉𝑝

𝐴𝑠𝑝
=

6𝑉𝑝

𝜓𝐴𝑝
=

𝐷𝑠𝑑

𝜓
 .                                                (42) 

Ergun’s equation can then be written as  

∆𝑃

𝐻
= 150

(1−𝜀)2

𝜀3
𝜇𝐻𝑇𝐹𝑈

(𝜓𝐷𝑣)
2 + 1.75

1−𝜀

𝜀3
𝜌𝐻𝑇𝐹𝑈

2

𝜓𝐷𝑣
.                                            (43) 

Since particle sphericity is difficult to calculate with irregular shaped solids, it was deduced from 

Ergun’s correlation using Equation 37. The predicted pressure drop was calculated for a range of 

sphericity values using this equation. The percent average relative absolute error (ARAE) between 
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measured and predicted pressure drop was determined. The sphericity that resulted in the minimum 

ARAE value was selected. The ARAE is defined as  

%𝐴𝑅𝐴𝐸 =  
1

𝑛
∑

|𝑥𝑖,𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑−𝑥𝑖,𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑|

𝑥𝑖,𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑
𝑥 100𝑛

𝑖=1  .                                          (44) 

In order to evaluate Equation 43, the remaining packed bed parameters must be known.  The 

equivalent diameter by volume of the pellets was obtained by measuring the mass of 35 random samples 

and then utilizing the true density to calculate the volume of each of the samples. The average volume of 

the 35 samples was subsequently used to obtain the equivalent particle diameter by volume as defined in 

Equation 42. The resulting diameter was 0.04259 m with a standard deviation of 0.006426 m. Midland 

Research Center provided the ore density of 3200 kg/m
3
.  

To determine bed porosity, the total pellet mass and the bed volume were used to estimate the 

bulk density, where bulk density = bed mass/bed volume, which was then used in the following equation 

to calculate porosity:  

𝜀 = 1 −
𝐵𝑢𝑙𝑘 𝑑𝑒𝑛𝑠𝑖𝑡𝑦

𝑇𝑟𝑢𝑒 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 
  .                                                            (45) 

Porosity was also measured in a separate container of known volume with a diameter that was similar to 

the final bed diameter to confirm the voidage.  

 Figure 11 provides an additional system schematic that illustrates the location of the pressure taps 

and the packed bed arrangement. As can be seen in the figure, the packed bed support plate and the 

restriction created by the insulation at the exit and entrance of the bed introduce an additional pressure 

drop. To estimate this value, the pressure drop was measured under varying velocities while the bed was 

empty. A third-order polynomial best-fit equation was then used to calculate the additional pressure loss. 

This value was subtracted from the total bed pressure drop to isolate the pressure drop due to the packed 

bed alone. In order to test whether there was flow maldistribution due to the inlet geometry, velocity was 

measured at various points in the cross section of the first five to ten centimeters of the bed with a vane 

anemometer and found to be acceptable. 
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Pressure drop measurements were conducted for particle Reynolds numbers between 353 ≤ Rep ≤ 

5206. This large range was needed to achieve an accurate assessment of the slope of the pressure drop 

curve. In order to meet this wide range of velocities, three blowers were employed, i.e. a ¼ hp blower, a 

1/30 hp blower, and a 7.5 hp blower. The results of the pressure drop measurements as a function of 

particle Reynolds number are provided in Figure 12. An error propagation uncertainty analysis was 

conducted and the pressure gradient (ΔP/L) uncertainty is included in the figure. Air mass flux (kg/m
2
-s) 

uncertainty was also calculated and ranged from 3.1% to 3.8%.  

 

The figure also includes the pressure drop gradient predicted by Ergun’s equation, Equation 43, 

which combines the sphericity and equivalent particle diameter to produce the Sauter-diameter as 

provided in Equation 42. Figure 12 additionally includes the predicted pressure drop gradient when 

particle sphericity is neglected. By using the equivalent particle diameter by volume alone, the Ergun 

equation underpredicts the pressure drop, therefore the sphericity should be known and incorporated in 

order to forecast pumping requirements of larger systems with greater certainty. After calculating the 

percent average relative absolute error for varying values of sphericity, a value of 0.495 resulted in the 

lowest error of 6.9%.  

 
Figure 11. System schematic illustrating the pressure tap locations in the upper and lower plenums. 
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Figure 12. Measured and predicted pressure drop versus particle Reynolds number. 

2.3.1.3 Model Validation 

The thermal and physical properties of the storage material and packed bed are provided in Table 

3. The specific heat capacity of the storage media varies as a function of temperature and was measured 

by Thermophysical Properties Research Laboratory, Inc. The following equation provides the specific 

heat capacity of the storage media as a function of temperature in J/(kg-K): 

𝐶𝑝(𝑇) =  5.18135𝑥10−6(𝑇3) −  7.580075𝑥10−3(𝑇2) + 5.88548145𝑇 − 429.234632   (46) 

where T is in Kelvin. The equation is valid for temperatures between 23°C - 590°C and was used to model 

the solid temperature. 

Table 3. Experimental and simulation parameters used in validating the SHS model. 

Parameter Value 

Porosity, ε 0.51 

Ore thermal conductivity, ks 1.5 W/m-K 

Ore density,ρs 3200 kg/m
3
 

Hbed 0.889 m 

Dbed 0.4445 m 

Dp 0.0425 m 

Insulation thickness 0.184 m (7.25in.) 

Insulation thermal conductivity 0.06 W/m-K 

Tank wall thickness 3.175mm (0.125in.) 

Nx 100 

Rx 10 

Δt 1 sec 
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Air was used as the HTF in the SHS packed bed experimental system. The thermophysical 

properties of air were evaluated at the system’s average temperature, expressed as the average of the inlet 

temperature during charging mode and the initial bed temperature, which was defined as ambient. The 

equations used for evaluating the thermophysical properties of air are defined as follows: 

𝜌𝐴𝑖𝑟 = (−5.75399𝐸 − 16)(𝑇5) + (3.02846𝐸 − 12)(𝑇4) − (6.18352𝐸 − 9)(𝑇3) + (6.29927𝐸 −

6)(𝑇2) − (3.5422𝐸 − 3)(𝑇) + 1.25079  in (kg/m
3
)                            (47) 

𝜇𝐴𝑖𝑟 = (6.10504𝐸 − 10)(𝑇3) − (2.13036𝐸 − 6)(𝑇2) + (4.71398𝐸 − 3)(𝑇) + 

(1.67555𝐸 − 5)  in kg/(m-s)                                                 (48) 

𝐶𝑝𝐴𝑖𝑟 = (1.28806𝐸 − 13)(𝑇4) − (4.46054𝐸 − 10)(𝑇3) + (4.8772𝐸 − 7)(𝑇2) +  

(1.82754𝐸 − 5)(𝑇) + 1.00651   in kJ/(kg-K)                                 (49) 

𝑘𝐴𝑖𝑟 = (−4.44955𝐸 − 15)(𝑇4) + (2.41702𝐸 − 11)(𝑇3) − (4.09601𝐸 − 8)(𝑇2) + (7.91034𝐸 −

5)(𝑇) + 0.242006   in W/(m-K) .                                           (50)   

Several experimental runs were conducted to furnish a robust data set for model validation. The 

inlet temperature during charging and discharging mode varied with temperature in the experiments and 

in the simulation, and were defined by the plenum temperature of the respective mode. Table 4 provides 

the operating conditions for the validation data set. Figures 13 – 14 and 16 - 19 compare the 

experimentally measured and numerically modeled air temperature at the five axial positions within the 

packed bed during charging and discharging mode. Figure 15 provides a comparison of the solid 

temperature profile during charging mode of Experiment #1. The inlet temperature to the system during 

each of the modes is provided as a dashed line in the figures that provide air temperature.  

Table 4. Operating conditions of the experiments used for model validation. 

Experiment # Nominal Charging 

Inlet Temperature 

(°C) 

Nominal 

Discharging Inlet 

Temperature (°C) 

Charging Mass 

Flow Rate (kg/sec) 

Discharging Mass 

Flow Rate 

(kg/sec) 

1 500 190 0.044015  0.04484 

2 400 23 0.03453 0.035429 

3 200 100 0.035197 0.036356 
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Figure 13. Comparison of modeled and experimental data for charging air temperature of Experiment #1. 

 

 

 

Figure 14. Comparison of modeled and experimental data for discharging air temperature of Experiment 

#1. 
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Figure 15. Comparison of modeled and experimental data for solid temperature during charging mode of 

Experiment #1. 

 

 

 

 

Figure 16. Comparison of modeled and experimental data for charging air temperature of Experiment #2. 
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Figure 17. Comparison of modeled and experimental data for discharging air temperature of Experiment 

#2. 

 

 

 

Figure 18. Comparison of modeled and experimental data for charging air temperature of Experiment #3. 
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Figure 19. Comparison of modeled and experimental data for discharging air temperature of Experiment 

#3. 

  

 Though the simulated temperature profile does not fall within the uncertainty range of the 

experimental data in all instances, there is also uncertainty associated with the numerical data due to the 

inherent error in measurement of the operating parameters that were used in the model (e.g. porosity, 

mass flow rate, particle diameter, etc.). Thus the numerically modeled temperature profiles are in 

reasonable agreement with the experimental data.  

2.3.1.4 Validation of the Use of Molten Salt as a HTF 

 Though air is used as a HTF in central receiver CSP plants, molten salt is more commonly 

adopted in demonstration and utility-scale facilities. As such, performance analyses in subsequent 

chapters are carried out with molten salt as the HTF. To validate the use of molten salt in the Dispersion-

Concentric model, the experimental data of Pacheco et al. [36] was employed. A 2.3 MWh thermocline 

pilot-scale system used a NaNO3-KNO3 eutectic as the HTF and a combination of quartzite and silica 

sand as the storage medium. The same validation methodology of Flueckiger et al. [31] was adopted, 

wherein the final temperature during charging mode was taken as the initial temperature of the system 

during discharging given that the initial condition was not provided in the original study. The input 
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parameters included the following: superficial bed velocity = 4.36x10
-4

 m/s; solid density = 2500 kg/m
3
; 

porosity = 0.22; specific heat capacity = 830 J/kg-K; inlet HTF temperature = 290°C; solid thermal 

conductivity = 5 W/m-K; particle diameter = 0.01905 m; tank wall thickness = 0.04 m and insulation 

thickness = 0.23 m [27, 31]. In order to determine if the thermophysical properties of the HTF must vary 

with temperature in the simulation, the results of constant properties versus temperature dependent 

properties were compared and the difference was negligible. Therefore the thermophysical properties of 

the HTF were taken as a constant, average value over the operating temperature range of the system. 

These values are as follows: ρHTF = 1818.8 kg/m
3
, kHTF = 0.524 W/(m-K), and Cp,HTF = 1516.4 J/kg-K. 

The thermophysical properties of the molten salt are provided in [27] as 

𝜌 𝑠𝑎𝑙𝑡(𝑇) = (−0.6354𝑇) + 2089.9 in kg/m
3
                                           (51) 

𝜇𝑠𝑎𝑙𝑡(𝑇) = (−1.473189317978𝐸−10 ∙ 𝑇3) + (2.279835623143𝐸−7 ∙ 𝑇2) 

−(1.199467889194𝐸−4 ∙ 𝑇) + 2.270644077145𝐸−2 in kg/(m-s)                        (52) 

𝐶𝑝𝑠𝑎𝑙𝑡(𝑇) = (0.172𝑇) + 1443 in J/(kg-K)                                             (53) 

𝑘𝑠𝑎𝑙𝑡(𝑇) = (0.00019𝑇) + 0.44299 in W/(m-K)                                          (54) 

The system discharged for 2 hours and the simulated results are compared to the experimental data in 

Figure 20. 

 
 

Figure 20. Plot of simulated data and experimental results for a packed bed molten salt SHS system. The 

experiment was conducted in Pacheco et al. [36]. Dashed lines represent results from the D-C model. 
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2.3.2 Latent Heat Storage Model Validation 

 As discussed in Section 2.2.1, three apparent heat capacity functions were analyzed for their 

ability to simulate the phase change process. Model validation was executed with the use of a laboratory-

scale prototype LHS system of 770 randomly packed sodium nitrate spheres that were encapsulated in a 

high melting temperature polymer. The experimental setup for charging mode is provided in Figure 21 

and the specifications of the complete experimental setup as well as the uncertainty calculations can be 

found in the work of Alam et al. [61, 62]. The tank of the pilot-scale SHS system described in Section 

2.3.1.1 was replaced with a smaller tank that could accommodate the lower volume required for the 

capsules. The system was operated with volumetric flow rates that ranged between 110 m
3
/hr and 151 

m
3
/hr, and it utilized the same instrumentation to measure pressure, flow rate, and temperature as the SHS 

system. Hooded k-type thermocouples were installed at four axial positions along the packed bed height. 

At each axial position, there were five thermocouples placed across the diameter of the bed to monitor air 

temperature and flow uniformity. Thermocouples were also placed within a PCM capsule that was 

positioned at the center of each thermocouple row. These capsules were constructed differently than the 

remaining capsules in order to accommodate the thermocouple. Rather than a single contiguous sphere of 

salt encapsulated in polymer, the monitoring capsules consisted of two individually encapsulated 

hemispheres that were bound together to form a single sphere. The thermocouple was placed between the 

two hemispheres. Consequently, the temperature provided by this thermocouple did not accurately 

represent the center temperature of each sphere, as was later proven in an external study. Thus the HTF 

temperature of the system was used in validating the model and the PCM temperature was disregarded.  

Table 5. LHS packed bed simulation parameters. 

Description Nominal value Reference 

Bed height  0.254 m  

Bed diameter 0.254 m  

Bed porosity  0.348  

Particle inner diameter 0.02653 m  

Particle shell thickness 0.00045 m  

Tank wall thickness 0.00635 m  

Tank thermal conductivity 43.84 W/m-K [63] 
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Table 5 (continued) 

Insulation thickness 0.1524 m  

Insulation thermal conductivity 0.06 W/m-K  

NaNO3 solid thermal conductivity 0.50 W/m-K  

NaNO3 liquid thermal conductivity 0.54 W/m-K  

NaNO3 solid density  1908 kg/m
3
 [64] 

NaNO3 liquid density  2125 kg/m
3
 [64] 

NaNO3 latent heat 172,000 J/kg  

NaNO3 solid specific heat 1835.4 J/kg-K [65] 

NaNO3 liquid specific heat 1655 J/kg-K [65] 

NaNO3 melting point 306°C  

NaNO3 solidification point 304°C  

Capsule PTFE thermal conductivity 0.22 W/m-K  

Nx – axial grid steps 50  

Rx – radial grid steps per sphere 50  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 21. LHS laboratory-scale prototype system schematic and thermocouple (ThC) map. Details of the 

experiment can be found in [61]. 

 

 For each experimental run, the entire packed bed was first completely pre-heated to 285°C using 

the top heater and centrifugal blower. Charging mode then commenced by heating the inlet air at the top 

of the bed to 326°C and was completed when the PCM temperature at the bottom row reached the inlet 

temperature. The blower was then positioned at the bottom of the system and discharging mode began by 

heating the inlet air at the bottom of the system to 286°C and removing energy from the capsules until the 

PCM temperature at the top of the bed reached approximately 286°C. The parameters used in the model 
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are provided in Table 5. Though a constant inlet temperature was assumed during charging, the inlet 

temperature during discharging mode initially varied with time due to the thermal inertia of the system 

and is included in the plot of row 2 for the discharging process.  

2.3.2.1 Evaluation of the Effective Heat Capacity Function 

 The three aforementioned effective heat capacity functions, i.e. the DSC curve of Equation 30, 

rectangular function  of Equation 36, and logistic function of Equation 35, were used in the Dispersion-

Concentric model to evaluate their efficacy in predicting the temperature profile of the experimental data. 

Though the Dispersion-Concentric model accounts for intra-particle diffusion, during the validation 

process it was observed that there was additional resistance to heat transfer during phase change that was 

not accounted for by the physics of the model. Hence the external convective heat transfer correlation 

proposed by Wakao et al. [21] was used in conjunction with the effective heat transfer equation, Equation 

55, provided by Jeffreson [66], to create a closer match between the experimental and simulated data.  

ℎ𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 =
ℎ𝑝

1+0.2𝐵𝑖
                                                              (55) 

This effective heat transfer coefficient replaced the particle coefficient, hp, in the energy equation 

calculations. All other correlations used in the SHS model were employed in the LHS model. When 

natural convection was included in the simulation, the PCM increased in temperature too rapidly and the 

simulated temperature profile was not in good agreement with the experimental results, therefore natural 

convection within the PCM capsules was excluded. In Nithyandandam and Pitchumani [35], it was shown 

that natural convection did not have any significant effect on the charge rate for small particles. In 

Jalalzadeh-Azar et al. [67], the results from a high temperature packed bed of 12.7 mm diameter PCM 

pellets (Tmelt = 880°C) were used to validate a numerical model that neglected natural convection within 

the PCM capsules. The simulation matched within reason of the experimental values, therefore the 

inclusion of natural convection may not be necessary for all packed bed scenarios and is considered 

negligible for the particle size under study in this investigation. 
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 A constant solid heat capacity and constant liquid heat capacity was assumed when the PCM was 

in each respective phase. The effective heat capacity is applied to any node in which the PCM 

temperature lies between the solidus and liquidus temperatures, as can be visualized by Figure 22 for the 

rectangular function. 

 

 

 

 

 

 

 

Figure 22. Variation of heat capacity with temperature for a rectangular effective heat capacity function. 

 

 To obtain an effective heat capacity function using DSC measurements, a heat flow curve was 

determined via a TA Instruments Q600 TGA/DSC. The instrument provides simultaneous 

thermogravimetric analysis as well as differential scanning calorimetry. A sample of sodium nitrate of the 

same grade used in the packed bed pellets (98+%) was heated and cooled through the phase change 

temperature in ceramic alumina pans under a nitrogen gas purge. The instrument was calibrated for a 

ramping rate of 1K/min, and this rate was used in the measurements and to determine the melting and 

solidification effective heat capacity curves with Equation 30. The latent heat of fusion and melting 

temperature acquired from the measurements were 170.9 kJ/kg and 306.35°C, respectively. The latent 

heat of solidification and solidification temperature were 170.1 kJ/kg and 302.34°C, respectively. The 

solid and liquid specific heat capacities were referenced from [64, 65] and are provided in Table 5. The 

effective heat capacity curves are illustrated in Figures 23 and 24. 
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Figure 23. Effective heat capacity curve of the melting process for sodium nitrate. The sample was heated 

at 1K/min. 

 

 
Figure 24. Effective heat capacity curve of the solidification process for sodium nitrate.  

 

  

 Polynomial regression equations were employed to reproduce the shape of the effective heat 

capacity curves. Two distinct fourth order polynomial equations were used to model the heat capacity 

during melting: one from the onset to the peak of melting and another from the peak to the liquidus point, 

defined respectively as 

𝐶𝑝𝑒𝑓𝑓 = (−6.138410916 ∙ 𝑇4) + (8.184093887𝐸3 ∙ 𝑇3) − (4.054467609𝐸6 ∙ 𝑇2) +    

(8.859274628𝐸8 ∙ 𝑇) − 7.212555798𝐸10       for 299.84°C ≤ T < 306.35°C               (56) 

and 
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𝐶𝑝𝑒𝑓𝑓 = (40.885751986 ∙ 𝑇4) − (5.1536031432𝐸4 ∙ 𝑇3) + (2.4355700734𝐸7 ∙ 𝑇2) − 

(5.1148076097𝐸9 ∙ 𝑇) − 4.0272892760𝐸11  for 306.35°C ≤ T ≤ 310.68°C               (57) 

 A single 6
th
 order polynomial was used to characterize solidification from the peak to the solidus point: 

𝐶𝑝𝑒𝑓𝑓 = (−11.7992675546556 ∙ 𝑇6) + (2.10409802521218𝐸4 ∙ 𝑇5) − (1.5633494286549𝐸7 ∙

𝑇4) + (6.19491471878624𝐸9 ∙ 𝑇3) − (1.38078998166774𝐸12 ∙ 𝑇2) + (1.64138018646662𝐸14 ∙

𝑇) − 8.12961689535658𝐸15    for 295.2°C ≤ T≤ 302.34°C                          (58) 

It should be noted that the significant figures in Equations 56 - 58 are needed to provide a reasonably 

accurate estimate of the effective heat capacity. 

 The logistic function provides a smooth, continuous effective heat capacity curve, the shape of 

which is defined by the parameter α. As illustrated in Figure 25, a short, broad peak develops for low α 

values, therefore the melting temperature range increases as α decreases.  

 The rectangular function invokes a constant effective heat capacity value between the solidus and 

liquidus temperatures. For the comparison, a phase change temperature range of 2°C was chosen for both 

rectangular and logistic functions. An alpha parameter of 15 induces the 2 degree phase change 

temperature range. Figure 26 provides a comparison of all three curves that were employed in the study.  

 
Figure 25. Effect of the alpha parameter on the shape of the logistic function effective heat capacity 

curve. 
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Figure 26. Effective heat capacity curves for each function studied in the LHS model. 

 

 The percent average absolute relative error, Equation 44, was calculated for the three functions of 

thermocouple rows 2 through 4. The comparison was made with experimental data in which the system 

flow rate was 151 m
3
/hr (0.05 kg/s). Figure 27 provides a comparison of the simulated temperature profile 

of the three functions and experimental data of row 3. For the charging and discharging processes, the 

logistic function and rectangular function are nearly indistinguishable and deviate slightly from the DSC 

function. During discharging mode, the DSC function diverges from the logistic and rectangular functions 

as the PCM is liberated from the solidification process. The same trend was observed in rows 2 and 4 and 

is likely due to the DSC curve’s lack of symmetry during solidification as compared to the logistic and 

rectangular functions, which are symmetric about the solidification temperature. 

 Table 6 presents the percent average relative absolute  error for the three functions. The relative 

error between simulated and measured air temperature remains below 1% in every instance, and though 

the rectangular function shows the largest error, the difference is minor. The simplicity of the rectangular 

function warrants its use, therefore this function was adopted in the LHS model using a 2°C phase change 

temperature range. 
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      a.              b.    

Figure 27. Row 3 comparison of simulated air temperature profile vs. experimental results. The three 

effective heat capacity functions are presented for a) charging mode and b) discharging mode. 

 

  

 Figure 28 provides the measured and simulated temperature profile for rows 2 through 4 of the 

packed bed system. As previously mentioned, the inlet air temperature during discharging mode varied 

with time, therefore this profile is provided in the row 2 discharging air temperature figure 28b. The 

rectangular function with a 2°C phase change temperature range was adopted in the simulation. The 

figure demonstrates that the simulated temperature of air predominantly falls within the experimental 

uncertainty range and is in close agreement with the measured results. 

 

 
        a.                                        b. 

 

Figure 28. Numerically modeled and experimentally measured temperature profile of air in a packed bed 

of sodium nitrate capsules. Figures 28a, c, and 3 provide charging mode results and b, d, and f provide 

discharging mode results for thermocouple rows 2 through 4 in the experimental system. 
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         c.                     d. 

 
    e.                        f. 

Figure 28 (continued) 

Table 6. Percent ARAE of measured and simulated air temperature for each effective heat capacity 

function. 

 

Thermocouple row DSC function Logistic function Rectangular function 

Row 2 0.759% 0.809% 0.813% 

Row 3 0.659% 0.680% 0.684% 

Row 4 0.499% 0.551% 0.556% 

 

 Thermocouple row 1 was neglected in the analysis as the simulated results deviated significantly 

from the measured data. To gauge whether there was a flaw in the simulation or the experimental system, 

the air temperature profile was simulated while the sodium nitrate capsules were heated sensibly. Figure 

29 provides the temperature profile for all four rows and demonstrates that during the pre-heating stage, 

i.e. from room temperature to 285°C, row 1 diverges to a greater degree from the measured data than the 

remaining three rows. Since this row was located at the bottom of the bed, there may have been an issue 

with leakage of the PCM or shifting of the capsules. The input parameters for the simulation during 
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sensible heating include the following: initial bed temperature = 23°C, solid density = 2200 kg/m
3
, solid 

thermal conductivity = 0.5 W/(m-K), solid specific heat capacity = 1394 J/(kg-K), and mass flow rate = 

0.05 kg/s. The effective heat transfer coefficient, Equation 55, was not applied during this phase of 

sensible heating and the solid-solid second order transition that occurs at 275°C was not observed in the 

measured results, which is likely due to its low value that is reported between 12 – 45 J/g [64]. 

    

 
Figure 29. Numerically modeled vs. measured air temperature profile of the LHS packed bed as the 

capsules were heated sensibly during charging mode. The inlet air temperature is provided in the profile 

of Row 4. 
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CHAPTER 3: PERFORMANCE ANALYSIS 

 

3.1 Introduction  

The purpose of this chapter is to compare the performance of LHS and SHS thermocline systems 

and understand the dynamics of their behavior. The evaluation will expound upon two previous studies 

that investigated LHS systems from a plant level and a storage system level, i.e. the work of Flueckiger 

and Garimella [5], and Nithyanandam and Pitchumani [35], respectively. 

Three assessments are conducted. The first two assessments evaluate hypothetical PCMs in order 

to isolate the influence of different parameters under investigation, and the third analysis evaluates the use 

of potential PCMs for use in a real system. The three analyses are conducted as follows: 

1.)  A SHS and two single-PCM LHS packed bed systems are compared under the context that all 

thermal and physical properties are equal, aside from the addition of latent heat in the LHS 

system. The goal is to understand how the phase change process and phase transition 

temperature affects the LHS system’s output and efficiency.  

2.)  2-PCM and 3-PCM LHS cascaded systems are compared to investigate thermodynamic and 

energy output advantages over the single-PCM design.  

3.)  Realistic parameters for each system are designated by adopting the thermal and physical 

properties of the respective experimental packed beds used in validating the model. Thus the 

parameters used for the SHS system are derived from the actual packed bed characteristics of 

the pilot-scale system in Pacheco et al. [36] and the parameters for the LHS system stem from 

the characteristics of the lab-scale setup of Alam et al. [62], however a PCM with higher 

melting temperature is substituted.  
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In order to compare the systems, they each operate under the conditions defined in Table 7. To 

minimize the effect of dissimilar convective heat transfer rates, the HTF mass flux is maintained as a 

constant value across all systems by defining a constant tank diameter and mass flow rate for each system,  

as specified in Table 7.  After completing a grid and time step study, the axial domain of the packed bed 

was discretized into uniformly spaced nodes that were 0.025 m apart and the time step was defined as 1 

second. Each filler sphere was divided into 30 equally spaced elements in the radial direction for the LHS 

system and 10 equally spaced elements in the SHS system. The volume averaged filler temperature was 

used to calculate the temperature difference between storage material and HTF in subsequent sections. 

 The parameters of the analysis are based on a central receiver CSP facility that employs molten 

salt as the HTF. The hot operating temperature of the solar field, THTF,h is based on the safety margin 

needed to minimize the formation of corrosive nitrites in the molten salt [1]. The inlet temperature during 

discharging mode, or the cold operating temperature of the solar field, THTF,c, is required to prevent 

solidification of the salt. The cut-off criteria for the charging and discharging processes from 

Nithyanandam and Pitchumani [68] are applied. These threshold values are characterized by a normalized 

temperature, which is expressed as 

𝜃 =
𝑇−𝑇𝐻𝑇𝐹,𝑐

𝑇𝐻𝑇𝐹,ℎ−𝑇𝐻𝑇𝐹,𝑐
 .                                                            (59) 

The charging threshold normalized temperature is 0.39 and the discharging threshold value is 0.74.  Each 

system was cycled until steady state was achieved. At this point, the system consistently discharged the 

same quantity of thermal energy in MWh to the fourth decimal place.  

The previous LHS investigations of Flueckiger and Garimella [5], and Nithyanandam and 

Pitchumani [35] provide a starting point for PCM melting point selection. The studies demonstrated that 

there is a severe reduction in system output, utilization, and a plant’s capacity factor when the the phase 

transition temperature falls between the charging (θc’) and discharging (θd’) cut-off temperatures, i.e. 

when θc’ < θm < θd’. Flueckiger and Garimella [5] additionally demonstrated that a LHS system only 

outperforms a SHS packed bed system when the transition temperature falls below the charging cut-off 
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temperature. When this condition is met, there is an improvement in a plant’s capacity factor and a 

decrease in thermal energy discard, where the thermal energy discard is the energy lost due to storage 

limitations. If, for example, a storage system reaches its saturation condition while sufficient solar 

radiation is still available, the heliostats must defocus to a state that supplies energy for steam generation 

alone. The energy that could have been harnessed for storage is the thermal energy discard. 

 Based on these phase transition temperature limitations, two PCMS with a low and high melting 

point were chosen for use in the LHS system of Analysis 1. The first is based on a eutectic of sodium 

chloride and potassium sulfate with a phase transition temperature of 515°C. This PCM was deemed 

suitable for the current application (θmelt = 0.82) as it lies above the discharging threshold temperature. 

The two salt components form a quaternary system consisting of 15.1wt% K2Cl2 - 21.8% Na2Cl2 - 25.2% 

K2SO4 - 37.9% Na2SO4. The latent heat of fusion was measured with a TA Instruments Q600 TGA/DSC 

and the resulting value is 187000 J/kg. The corresponding heat flow curve is illustrated in Figure 30. The 

melting point of the second PCM falls immediately below the charging cut-off temperature. The chosen 

temperature is 395 °C (θmelt = 0.386), and the latent heat is defined as equivalent to the first PCM, with a 

value of 187000 J/kg. 

 

Figure 30. Melting heat flow curve of the sodium chloride and potassium sulfate eutectic mixture. 
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Table 7. Input values for TES model. Theses common assumptions are used in all analyses. 
Description Value 

THTF,h 565°C 

THTF,c 288°C 

Tmax,Ch 396°C 

Tmin,Dch 493°C 

ṁ 84.5175 kg/s 

Tank diameter 10.593 meters 

ρHTF 1818.8 kg/m
3
 

kHTF 0.524 W/m-K 

Cp,HTF 1516.4 J/kg-K 

 
 

3.2 Performance Indicators 

 Various indicators are used in the literature to quantify the performance of storage systems and to 

compare different operating scenarios. The second-law efficiency, or exergy efficiency, is one such metric 

that is used in this study to take into account the quantity and quality of energy that is stored and 

recovered from the system. This efficiency is used in conjunction with the capacity ratio and utilization 

ratio to understand system behavior. 

 Assuming that the HTF is incompressible, the overall exergetic efficiency of a complete cycle is 

defined as the ratio of net exergy recovered over the net exergy supplied [69]: 

𝜂𝐼𝐼 =
𝐸𝑥𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑒𝑑,𝐻𝑇𝐹,𝑁𝐸𝑇

𝐸𝑥𝑠𝑢𝑝𝑝𝑙𝑖𝑒𝑑,𝐻𝑇𝐹,𝑁𝐸𝑇
                                                          (60) 

where  

𝐸𝑥𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑒𝑑,𝐻𝑇𝐹 = ∫ �̇�𝐻𝑇𝐹𝑐𝑝,𝐻𝑇𝐹 (𝑇𝐻𝑇𝐹,𝑜𝑢𝑡 − 𝑇𝐻𝑇𝐹,𝑖𝑛𝑙𝑒𝑡 − 𝑇𝑜 ln (
𝑇𝐻𝑇𝐹,𝑜𝑢𝑡

𝑇𝐻𝑇𝐹,𝑖𝑛𝑙𝑒𝑡
))]𝑑𝑡

𝑡𝑓𝑖𝑛𝑎𝑙,𝐷𝑐ℎ

𝑡𝑖𝑛𝑖𝑡𝑖𝑎𝑙,𝐷𝑐ℎ
      (61) 

𝐸𝑥𝑠𝑢𝑝𝑝𝑙𝑖𝑒𝑑,𝐻𝑇𝐹 = ∫ �̇�𝐻𝑇𝐹𝑐𝑝,𝐻𝑇𝐹 (𝑇𝐻𝑇𝐹,𝑖𝑛 − 𝑇𝐻𝑇𝐹,𝑜𝑢𝑡 − 𝑇𝑜 ln (
𝑇𝐻𝑇𝐹,𝑖𝑛

𝑇𝐻𝑇𝐹,𝑜𝑢𝑡
))]𝑑𝑡

𝑡𝑓𝑖𝑛𝑎𝑙,𝑐ℎ

𝑡𝑖𝑛𝑖𝑡𝑖𝑎𝑙,𝑐ℎ
          (62) 

 The capacity ratio describes the degree to which the maximum theoretical storage capacity is 

utilized during the charging process and is defined as [18] 

𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑟𝑎𝑡𝑖𝑜 =  𝜎 =  
𝑄𝑠𝑡𝑜𝑟𝑒𝑑

𝑄𝑚𝑎𝑥 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑠𝑡𝑜𝑟𝑒𝑑
                                            (63) 

The energy stored in the PCM is calculated as a summation of the total energy stored in the capsules at 

the end of charging mode.  
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 To calculate the energy stored in each filler sphere, the model determines whether the control 

volume of each radial node is in the solid, liquid, or mushy phase. If the PCM temperature falls within the 

predefined phase change temperature range, the liquid fraction is determine. This is defined as: 

𝐿𝑖𝑞𝑢𝑖𝑑 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 =  
𝑇𝑝𝑐𝑚,𝑟−𝑇𝑠𝑜𝑙𝑖𝑑𝑢𝑠

𝑇𝑙𝑖𝑞𝑢𝑖𝑑𝑢𝑠−𝑇𝑠𝑜𝑙𝑖𝑑𝑢𝑠
.                                               (64) 

In contrast, the utilization ratio characterizes the amount of energy that is extracted versus the 

maximum potential stored energy that could be recovered during the discharging process if the PCM were 

to be cooled to the initial bed temperature [35] 

𝑈𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑖𝑜 =  𝛾 =  
𝑄𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒𝑑,𝑡𝑜𝑡𝑎𝑙

𝑄𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑠𝑡𝑜𝑟𝑒𝑑
                                    (65) 

where the discharged energy is determined by calculating the difference between the energy stored at the 

end of the charging cycle and the energy remaining in the filler material after the discharging cycle: 

𝑄𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒𝑑,𝑖 = 𝑄𝑠𝑡𝑜𝑟𝑒𝑑 𝑎𝑓𝑡𝑒𝑟 𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔,𝑖 − 𝑄𝑠𝑡𝑜𝑟𝑒𝑑 𝑎𝑓𝑡𝑒𝑟 𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔,𝑖                       (66) 

where i is the given cycle under consideration. The maximum possible storage capacity of the system is 

defined as  

𝑄𝑚𝑎𝑥 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑠𝑡𝑜𝑟𝑒𝑑 = 𝑚𝑝𝑐𝑚𝑐𝑝,𝑙𝑖𝑞𝑢𝑖𝑑 𝑇𝑖𝑛𝑙𝑒𝑡 − 𝑇𝑝𝑐𝑚,𝑙𝑖𝑞𝑢𝑖𝑑𝑢𝑠 + 𝑚𝑝𝑐𝑚Δℎ + 

𝑚𝑝𝑐𝑚𝑐𝑝,𝑠𝑜𝑙𝑖𝑑 𝑇𝑝𝑐𝑚,𝑠𝑜𝑙𝑖𝑑𝑢𝑠 − 𝑇𝑝𝑐𝑚,𝑖𝑛𝑖𝑡𝑖𝑎𝑙                                            (67) 

 Equations 61 and 62 are calculated at the end of each minute and summed over the charging and 

discharging period to calculate the total exergy supplied or recovered.  

3.3 Comparative Performance Evaluation of Packed Bed Systems  

3.3.1 Analysis 1: SHS vs Single-PCM LHS Systems  

 In this analysis, the tank size was defined as 650 m
3
 for the LHS and SHS systems. Both systems 

utilize the thermal and physical properties of the prototype SHS system of Pacheco et al. [36]. The 

parameters used in this analysis are provided in Table 8. The SHS system has a potential storage capacity 

of 81 MWh, which was calculated with the difference between THTF,h and THTF,c. The LHS systems have 

the same potential sensible heat storage capacity yet have an additional 66 MWh due to latent heat, 
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totaling 147 MWh. To distinguish the two LHS systems, they are identified as LHShigh and LHSlow, 

corresponding to melting points of 515°C and 395°C, respectively.  

Table 8. Thermal properties of storage media and physical parameters of the SHS and LHS systems 

evaluated in Analysis 1. 

 

Parameter Value 

Porosity 0.22 

Cp,PCM,solid 830 J/kg-K 

Cp,PCM,liquid 830 J/kg-K 

ρPCM 2500 kg/m3 

kPCM 5.0 W/m-K 

Latent heat 187000 J/kg 

Particle diameter 0.01905 m 

Bed volume 650 m
3
 

Bed height 7.376 m 

  

 Table 9 provides a breakdown of the energy recovered from the filler and HTF, and also includes 

the potential storage capacity of the filler material, QbedMax, for each case. The LHShigh system reached 

steady state after 4 cycles and at this point, the system consistently discharged 104.68 MWh within 206 

minutes and completely charged within 182 minutes. Of this energy, 81.8 MWh was extracted from the 

PCM and the remaining was due to the storage capacity of the HTF. Alternatively, LHSlow system reached 

steady state after 3 cycles, consistently discharging 103.39 MWh within 177 minutes and completely 

charging within 238 minutes. Of the total energy discharged, 83.89 MWh was recovered from the PCM, 

and the remaining from the HTF. The SHS system achieved steady state in 10 cycles, at which point it 

reached the charging and discharging threshold temperatures in 164 and 161 minutes, respectively, and 

discharged 93.0 MWh. This exceeds the maximum potential storage capacity of the storage media due to 

the fact that the HTF contributed 24.3 MWh to the energy output. The maximum potential storage 

capacity of the HTF is 30.3 MWh, which is based on a temperature differential defined between THTF,h 

and THTF,c.  

Table 9. Division of recovered energy from each storage system, and total potential storage capacity. 

 EdischargedPCM 

(MWh) 

EdischargedHTF 

(MWh) 

Total Edischarged 

(MWh) 

QbedMax 

(MWh) 

SHS system 68.73 24.31 93.04 81 
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Table 9 (continued) 

LHShigh system 81.84 22.84 104.68 147 

LHSlow system 83.89 19.51 103.39 147 

 

 Table 10 lists the performance indicators of each system for the first cycle while Table 11 

provides the same indicators for the steady state cycle. All systems achieve overall exergy efficiencies 

greater than 95% at steady state. The net exergy supplied during the charging process is high during the 

first cycle since the systems initially charge for a long period of time in order to establish the baseline 

energy that remains in the system throughout cyclic operation. As such, the first cycles exhibit lower 

exergy efficiencies than the steady state cycles. Though the LHS systems discharge more energy, they 

only utilize slightly more than half of their potential storage capacity. Of this, 10.7% of the recovered 

energy is due to latent heat in the LHShigh system, and 17.2% is due to latent heat in LHSlow system. 

Discharging efficiency would be a synonymous metric to gauge utilization of the stored energy, however 

it includes the storage capacity of the HTF in addition to the filler media. Since the HTF has a high 

volumetric heat capacity, it has a strong contribution to the stored energy and skews the utilization due to 

PCM alone.  

Table 10. First cycle performance values. 

Performance metric SHS system LHShigh system LHSlow system 

η II,overall 0.915 0.972 0.597 

Capacity ratio 0.951 0.564 0.987 

Utilization ratio 0.870 0.557 0.572 

 

Table 11. Steady state cycle performance values. 

Performance Metric SHS system LHShigh system LHSlow system 

η II,overall 0.991 0.979 0.961 

Capacity ratio 0.937 0.564 0.987 

Utilization ratio 0.849 0.558 0.571 

 

 As was illustrated in Figure 4 of chapter 1, the architecture of the LHS thermocline zone consists 

of two sub-zones, i.e. a phase change region, and a sub-solidus sensible heat region. Equations 6 and 7 
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described the relationship between the movement of the phase change front in relation to the latent heat 

and solidus/liquidus temperatures of the PCM during charging and discharging. When the charging and 

discharging cut-off temperature are induced, the phase transition temperature has a conflicting effect on 

the charging and discharging processes.  Before discussing this effect, the heat transfer mechanism in a 

SHS system is first evaluated.  

 In Figure 31, the axial temperature profile of the SHS material and HTF is plotted with the degree 

of thermal non-equilibrium, or temperature difference between both media, at different charging states. As 

is illustrated and expected, thermal non-equilibrium exists in the thermocline zone and is negligible in the 

hot and cold zones. At the onset of charging, a large temperature difference exists between filler material 

and HTF at the top of the bed, resulting in an elevated degree of thermal non-equilibrium (not shown in 

figure). As the central region of the thermocline advances down the bed, it enters a region that was pre-

heated by the lower region of the thermocline, therefore the degree of thermal non-equilibrium gets 

progressively smaller over time and the rate of heat transfer decreases, causing the thermocline zone to 

widen. Eventually the thermocline exits the bed, inducing a saturation condition.  

 

Figure 31. Advancement of the thermocline and concomitant progression of thermal non-equilibrium 

during charging in the SHS system. HTF and storage media temperature are indistinguishable in the plot. 

The thermocline travels from the normalized bed height of 1 at the onset of charging, to 0 as charging 

terminates. 
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 The mechanism of heat transfer in a latent heat storage system differs due to the nearly constant 

temperature phase change process. Throughout charging mode in a LHS system, there lies an elevated 

region of thermal non-equilibrium that resides at the interface of the hot zone and the phase change zone.  

This is identified as the pinch point interface in Figure 32b due to its systemic effect. As the HTF enters 

the system, it approaches a region of the bed that is at the phase change temperature, and the temperature 

difference between the two media promotes a high degree of heat transfer.  At this juncture, the HTF 

supplies energy to the PCM, but is limited by the second law of thermodynamics which requires that the 

HTF remains above the PCM temperature to maintain a positive driving force for heat transfer.  After 

exchanging energy with the PCM, the HTF then exits the interface near the phase transition temperature 

and continues to flow down the bed, preheating the downstream capsules to the phase transition 

temperature. This establishes the phase change zone. As time progresses, the HTF continues to exit the 

interface at the phase transition temperature. There is no longer a driving force for heat transfer, therefore 

the phase change zone serves as a pinch point region. In cascaded systems, the pinch point region shifts 

along the vertical axis of the bed and does not necessarily coincide with the phase change process, 

therefore the phase change zone will be referred to as the pinch point zone.  

 The travel rate of the pinch point interface during charging mode can be characterized with 

Equation 6 in chapter 1, which is repeated here for convenience: 

𝑣𝑙𝑎𝑡𝑒𝑛𝑡,𝑐ℎ =
𝐶𝑝,𝐻𝑇𝐹,ℎ𝜌𝐻𝑇𝐹,ℎ𝑈

𝜀𝐶𝑝,𝐻𝑇𝐹,ℎ𝜌𝐻𝑇𝐹,ℎ+(1−𝜀)𝐶𝑝,𝑠,ℎ𝜌𝑠,ℎ[1+
1

𝑆𝑡𝑒
(

𝑇ℎ,𝐻𝑇𝐹−𝑇𝑐,𝐻𝑇𝐹

𝑇ℎ,𝐻𝑇𝐹−𝑇𝑠𝑜𝑙𝑖𝑑𝑢𝑠,𝑃𝐶𝑀
)]

                              (6) 

The equation defines the following conditions that affect the movement of the pinch point interface: 

1.) The interface travel rate increases with increasing difference between the solidus temperature 

and inlet HTF temperature, i.e. a lower melting point PCM is more favorable during the 

charging process. 

2.) The pinch point travel rate increases with decreasing Inverse Stefan number, i.e. decreasing 

latent heat of fusion.  
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 The effect of melting point is illustrated in Figure 32, which provides the first charging cycle’s 

axial temperature profile of both LHS systems as well as the SHS system for comparison. The system of 

Figures 32a and 32b consists of the PCM that melts at 515°C, whereas the PCM in the system of Figures 

32c and 32d melts at 395°C. As can be seen by comparing the top and middle figures, the lower melting 

point reduces the severity of the pinch point  problem by enabling a higher degree of heat transfer at the 

interface. At 120 minutes of charging, the pinch point interface of the LHSlow system has traveled further 

down the bed than the LHShigh system, and the pinch point region is shorter. Since the lower melting PCM 

exhibits a phase transition temperature that falls below the charging threshold value, the system can 

charge for a long period of time before the saturation condition is met. This enables the system to exploit 

a large portion of the storage capacity, as is demonstrated at the final charging state in Figure 32d. The 

final temperature profiles at steady state look similar to the final temperature profiles of the first cycle.  

 The pinch point phenomenom is exacerbated by a high latent heat value. Figure 33 provides 

different charging states of the first cycle for four systems of melting point equivalent to that of the 

LHShigh system, yet differing latent heat values. The sub-solidus front moves at the same velocity for each 

system. Since charging terminates when the sub-solidus front exits the bed, its movement defines the 

charging time, which is nearly equivalent for all four systems in this case. What differs is the movement  

                                            a.                          b. 

Figure 32. Axial HTF temperature profile for different states of the first charging cycle. In (a) and (b), the 

PCM melting point is 515°C, and in (c) and (d) the PCM melting point is 395°C, which falls below the 

charging cut-off temperature. The axial temperature profile of the SHS system is provided in (e) and (f). 

 

Pinch point zone 

Pinch point interface 

Top of bed Bottom 
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                                            c.                                                                                    d.  

                                            e.                      f.        

Figure 32 (continued) 

    

of the pinch point interface. In the systems exhibiting low latent heat, the interface moves faster down the 

bed as less time and energy are needed for complete melting of the PCM. As such, a larger fraction of the 

bed has reached the inlet HTF temperature and is characterized by a higher exergy state. This is reflected 

in the outlet temperature during the discharging process, as demonstrated in Figure 34 for the steady state 

discharging cycle.  

 

 

 

 

 

 

      

 

                                          a.                              b. 

Figure 33. Axial HTF temperature profile of systems with varying latent heat. The first charging cycle is 

depicted for a) 120 minutes, and b) the final charging state. Final charging time is included in parenthesis. 
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Figure 34. Outlet HTF temperature as a function of time for four systems of varying latent heat and a 

melting temperature of 515°C. The temperature profile is provided for the steady state discharging cycle. 

As latent heat decreases, discharging time similarly decreases, yet the HTF exits at the high operating 

temperature for a longer period of time.  

 

 

 During charging mode, a high phase transition temperature results in a lengthening pinch point 

region that serves as a bottle neck in heat transfer. During discharging however, the high phase transition 

temperature has the opposite effect. Equation (7) describes the velocity of the phase change front during 

the discharging process. It indicates that the front moves at an increasingly faster rate as the difference 

between liquidus temperature and inlet HTF temperature grows. 

𝑣𝑙𝑎𝑡𝑒𝑛𝑡,𝑑𝑐ℎ =
𝐶𝑝,𝐻𝑇𝐹,ℎ𝜌𝐻𝑇𝐹,ℎ𝑈

𝜀𝐶𝑝,𝐻𝑇𝐹,ℎ𝜌𝐻𝑇𝐹,ℎ+(1−𝜀)𝐶𝑝,𝑠,ℎ𝜌𝑠,ℎ[1+
1

𝑆𝑡𝑒
(

𝑇ℎ,𝐻𝑇𝐹−𝑇𝑐,𝐻𝑇𝐹

𝑇𝑙𝑖𝑞𝑢𝑖𝑑𝑢𝑠,𝑃𝐶𝑀−𝑇𝑐,𝐻𝑇𝐹
)]

                           (7) 

Faster movement of the phase change front is advantageous in that it enables a higher degree of energy 

depletion before discharging terminates. Therefore the high phase transition temperature provides an 

advantage in heat transfer during the discharging process. Latent heat has the same effect for both 

charging and discharging, i.e. an increase in latent heat reduces the velocity of the phase change front. 

When combined with the charging process, this is not necessarily a shortcoming. The large thermal inertia 

of a high latent heat value serves as a buffer, stalling movement of the sub-solidus front before it reaches 

the top of the system and terminates the discharging process. 
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 To illustrate the effect of phase transition temperature on the system’s behavior, Figure 35 

provides the final charging axial temperature profile for systems in which the melting point falls below 

the charging cut-off temperature and above the discharging cut-off temperature. To summarize system 

behavior during the charging process: 

1.) When the melting point falls below the charging cut-off temperature, the pinch point interface 

can travel down the full length of the bed before the saturation condition is met. A large 

fraction of the system is able to exploit its latent heat capacity and store energy at THTF,h, 

which is the maximum potential exergy state. 

2.) When the melting point lies above the discharging cut-off temperature, slow movement of the 

pinch point interface results in a long pinch point zone and a short hot zone. Therefore, when 

the saturation condition is met, a small fraction of the bed has reached the hot HTF 

temperature, and a large percentage of the particles remain in the phase change process.  

 
                                         a.        b. 

Figure 35. Effect of melting temperature on the final charging state of a single-PCM system. (a) provides 

the final axial HTF temperature profile when the melting temperatures fall below the charging threshold 

value. (b) provides the final axial HTF profile when the melting temperatures lie above the discharging 

threshold value. 

 

 Figure 36 provides the same information as Figure 35, but for the final discharging state. The 

systems are able to recover the energy that is above the discharging threshold value, therefore the 

following trends are observed: 
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1.) When the phase change temperature falls below the charging cut-off temperature, the system 

utilizes all of the energy at the maximum exergy state, yet does not recover all of the latent 

heat. 

2.) When the phase change temperature lies above the discharging cut-off temperature, the 

system can recover a large fraction of the stored energy, including latent heat. The degree of 

energy depletion is significantly high. 

 An ideal system would exhibit the final charging state of the low melting PCMs, in which most of 

the system reaches the hot inlet temperature, and would exhibit the final discharging state of the high 

melting PCMs, in which nearly all of the stored energy is extracted. 

 
         a.                 b. 

Figure 36. Effect of melting temperature on the final discharging state of a single-PCM system. (a) 

provides the final axial HTF temperature profile when the melting temperatures fall below the charging 

threshold value. (b) provides the final axial HTF profile when the melting temperatures lie above the 

discharging threshold value. 

 

 

 Figure 38 depicts the resulting outlet HTF temperature as it discharges from the system with time 

for four systems of different melting points. Important to note is that the temporal variation in outlet 

temperature affects the recovered energy and exergy in differing ways. From a perspective based purely 

on energy, the trends lead to the results of and Nithyanandam and Pitchumani [35], which demonstrated 

that energy output increases as the melting point increases from the low operating system temperature to 

the charging threshold value (i.e. from THTF,Dch to Tch,cut-off) and also increases as the melting point 
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decreases from the high operating system temperature to the discharging threshold value (i.e. from THTF,Ch 

to Tdch,cut-off). This is depicted in Figure 37, which displays the nondimensional energy output for systems 

of the same charging and discharging cut-off temperature as the current study. The useful energy was 

evaluated under three different Reynolds numbers, which are represented by the solid and dashed lines. 

 
Figure 37. Dimensionless useful energy discharged versus normalized melt temperature for the system 

under evaluation in Nithyanandam and Pitchumani [35]. The normalized charging and discharging cut-off 

temperatures are 0.39 and 0.74. The three curves represent useful energy discharged under different 

Reynolds numbers. (Copyright permission is included in Appendix C). 

 

 

 The quality of energy, or exergy, strongly differs however, when the melting point is less than the 

charging threshold value as opposed to when it is above the discharging threshold. In the former case, the 

outlet temperature is primarly at the maximum exergy state before diminishing to the discharging 

threshold value. In the latter case, the HTF exits the bed at the high exergy state for a short period of time 

before reducing to the melting temperature, which is a shift to a lower exergy state throughout most of the 

process. For example, Table 12 provides the discharging time as well as the energy and exergy discharged 

from the LHShigh and LHSlow systems. The discharging time for the LHShigh system is 16% higher than the 

LHSlow system, and provides a 1.2% increase in energy output. On the other hand, the LHShigh system 

recovers less exergy than the LHSlow system. In the plant level study of Flueckiger and Garimella [5], it 

was demonstrated that the benefit of LHS systems over SHS packed bed systems is only realized when 

the melting point is below the charging cut-off temperature. The annual plant capacity factor was 
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enhanced and the thermal energy discard was reduced for these cases. Though a high phase transition 

temperature allows the system to discharge for a longer period of time before the cut-off criteria is 

prompted, the reduced quality of energy dictates that the turbine operates at partial load conditions, 

leading to less power production when compared to systems of low phase transition temperature. Low 

phase transition temperature systems are also able to charge for extended periods of time before the 

saturation condition is induced, therefore they additionally benefit from reduced thermal energy discard. 

Table 12. Total energy and exergy recovered, and discharging time for the packed bed systems. 

 Total Energydischarged 

(MWh) 

Total Exergydischarged 

(MWh) 

Discharge time 

(min) 

SHS system 93.04 52.98 161 

LHShigh system 104.68 58.66 206 

LHSlow system 103.39 58.92 177 

 

The above analysis explores the performance and behavior of SHS and LHS packed bed systems 

and exemplifies that they can both achieve high overall exergy efficiencies. Though the LHS systems 

exhibit greater potential in storage capacity, they cannot fully harvest this capacity due to the limitation in 

heat transfer caused by the pinch point phenomenon. LHS systems can provide more energy than a SHS 

system of equivalent tank size, however the phase change temperature must be judiciously chosen to 

ensure that the exergy exceeds that of the SHS system in order to achieve a gain in plant output. When 

threshold values are implemented, this is realized through the use of low melting point PCMs, which 

discharge energy at the high exergy state for a longer time period than the SHS packed bed system. This is 

demonstrated in Figure 39. One shortcoming of SHS packed bed systems is the presence of the 

thermocline zone, which reduces the system’s ability to utilize its maximum potential capacity. Figure 33f 

provided the final charging state of the SHS packed bed system. At steady state, only 72% of the system 

could be used to store energy at the high operating temperature, the thermal gradient occupying the 

remaining fraction of the bed. In comparison, Figure 33d demonstated that 96% of the low phase change 

temperature system stored energy at the high exergy state. Thus one can see that an advantage of the LHS 
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system over the SHS system  is not just the added storage capacity due to latent heat, but its ability to 

store more energy at the high exergy state. 

 
Figure 38. Steady state discharging outlet HTF temperature as a function of time. Shown are two systems 

in which the PCM melting temperature falls above the charging threshold value and for two systems in 

which the melting temperature lies above the discharging threshold value. 

 

 

 
 

 

Figure 39. Steady state HTF temperature discharged over time. The dashed lines represent the 

temperature exiting the system when the PCM melting point is less than the charging threshold value and 

the solid line represents the HTF outlet temperature profile for the SHS packed bed system. 

 



www.manaraa.com

70 

 

3.3.2 Analysis 2: Cascaded LHS System Study 

Previous publications have emphasized the thermodynamic benefit of a cascaded latent heat 

storage system design [5, 70-73], wherein multiple PCMs are stacked in series with melting points that 

decrease with increasing distance from the charging inlet. This phase change temperature sequence 

ensures optimum performance by facilitating a good thermal match between HTF and PCM, and by 

minimizing the loss of exergy from the bed outlet [70]. Similar to the single PCM case, the melting points 

of the cascaded system must also fall below and above the charging and discharging cut-off temperatures 

respectively, to maximize utilization [5]. An additional constraint, as was demonstrated in Flueckiger and 

Garimella [5], is the application of a small disparity between the phase change temperatures of the top and 

bottom layers of a three PCM system, while still maintaining the aforementioned constraint. The merit of 

this configuration is a large gain in plant capacity factor when compared to other melting point 

arrangements and compared to sensible heat packed bed storage. 

Not only is the sequence of phase change temperature important, but the progression of latent 

heat can additionally impact performance. An increase in latent heat does not improve the overall 

exergetic efficiency when the latent heat of all PCMs are augmented equally [70, 74]. Adebiyi et al. [70] 

concluded however, that the PCM at the bottom of the charging outlet in a three PCM system should have 

the lowest melting point and highest latent heat to achieve optimum thermodynamic efficiency of high-

temperature LHS systems.  

In Analysis 1, it was demonstrated that the second law efficiency did not fluctuate notably 

between cases, albeit the deviation between recovered energy and exergy during the discharging process 

was significant. Therefore thermodynamic efficiency does not necessarily coincide with an optimally 

designed system. In the plant level study of Nithyanandam and Pitchumani [68], for any given tank height 

it was shown that both the capacity factor and total energy recovered from the system increased with 

decrease in particle diameter.  The same progression was not observed with overall annual exergy 

efficiency, i.e. the trend in performance did not equate to the trend in output.  In Shabgard et al. [73], 
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single PCM thermosyphon heat pipe systems were compared to a three PCM system in the 280 – 390°C 

temperature range. The authors found that the single PCM system with the lowest melting point exhibited 

the highest exergy efficiency, yet the cascaded system recovered more exergy during a charging-

discharging cycle, again emphasizing that the output does not necessarily follow the same trend as 

performance. 

In selecting PCMs for a cascaded system, several scenarios are possible. The succeeding studies 

evaluate a combination of hypothetical PCMs in a cascaded design under the premise that the optimal 

configuration is not based on efficiency alone. Though Adebiyi et al. [70] asserted that the lowest melting 

PCM should have the largest latent heat based on second law efficiency, this is investigated in the 

following analysis for a 2-PCM system and 3-PCM system. The goal is to understand if there is a 

combination of PCMs that would induce an energy output penalty rather than an improvement when 

compared to the nominal case of a single PCM.  The thermal properties and packed bed characteristics of 

the LHS system of Analysis 1 are employed in order to compare the cascaded systems to the baseline 

case. In each study, the PCM closest to the charging inlet is referred to as the top PCM and that closest to 

the charging outlet is referred to as the bottom PCM.  

Before studying the cascaded systems parametrically, the mechanism for enhanced energy storage 

and recovery with multiple PCMs is discussed. A single PCM, 2-PCM, and 3-PCM system are compared, 

all having the same potential storage capacity of 146.8 MWh, and system characteristics defined in Table 

8. The following three cases are evaluated: 

1.) The single-PCM LHShigh case, which assumes the phase change temperature and latent heat 

of the NaCl/K2SO4 eutectic. The values of this baseline case are 515°C and 187000 J/kg. 

2.) A 2-PCM system in which each PCM occupies half of the bed and both are assigned the same 

latent heat of 187000 J/kg. The melting point of the top PCM corresponds to the eutectic, and 

the bottom PCM was assigned a normalized melt temperature of 0.25 (Tmelt = 357.25°C). 
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3.) A 3-PCM cascade wherein each PCM occupies 1/3 of the bed and all are assigned the same 

latent heat as the baseline 1-PCM case. The same melting points of the 2-PCM system are 

assumed for the top and bottom PCM. A normalized melt temperature of 0.50 (Tmelt = 

426.5°C) is assigned to the middle PCM. 

 Figure 40 provides the temporal progression of the axial HTF temperature profile for the 1,2, and 

3-PCM cases during charging mode of the first cycle. At 60 minutes of charging, all three temperature 

profiles are equal. When multiple PCMs are employed, melting initiates as the sub-solidus sensible heat 

zone approaches a new cascade. As discussed in Section 3.3.1, a high rate of heat transfer occurs at the 

pinch point interface and the HTF leaves the interface at a temperature that draws near the phase 

transition temperature. In a cascaded system, each lower cascade can take advantage of that incoming low 

exergy flow stream to accelerate the phase change process, promoting greater usage of latent heat as well 

as sensible heat. Rather than one high heat transfer region at the pinch point interface as in the single 

PCM case, the cascaded systems exhibit several regions of thermal non-equilibrium, depending on the 

number of cascades, and each of these regions stimulates a high degree of heat transfer.  

 At 180 minutes, the lengthening pinch point of the single PCM case mandates that most of the 

PCM remains in the process of changing phase, and shortly thereafter the charging cut-off temperature is 

met. In the remaining two cases, the low melting PCM serves as a buffer by inhibiting the saturation 

condition.  At 240 minutes for the 2-PCM case, the top pinch point zone has lengthened into the bottom 

PCM cascade, and a fraction of the top PCM remains in the phase change process. On the other hand, it is 

at this time that the top PCM in the 3-PCM system is completely molten, allowing the pinch point 

interface to collapse. With this event, the hot zone is free to move at a higher velocity through the bed, as 

illustrated in the final charging time figure, which shows that more than half of the bed in the 3-PCM 

system has reached the hot inlet temperature. When a low melting PCM is adopted, as in the single-PCM 

LHSlow system, the large temperature difference between the hot inlet HTF and the phase transition 

temperature provides a large driving force for heat transfer, fostering rapid movement of the pinch point 
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interface. Under this condition, the pinch point interface is not necessarily an impediment in storage 

utilization. When the melting point is high however, as in the top PCM of the 2-PCM and 3-PCM system, 

the pinch point interface travels slowly down the bed, curbing growth of the hot zone. Since the 3-PCM 

system has a lower fraction of the high melting PCM, it completes the melting process before charging 

terminates, allowing the pinch point interface to break down. 

 
 

 
 

 
Figure 40. Comparison of charging axial temperature profile of a single-PCM, 2-PCM, and 3-PCM 

cascade with equivalent storage capacity and  latent heat. 
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To enable a direct comparison of the above three cases, Table 13 provides their performance 

profile. The use of three PCMs facilitates greater utilization of the potential storage capacity and 

enhanced energy and exergy output, however the overall exergy efficiency is highest for the single PCM 

case.  

 

Table 13. Steady state characteristics of each case assessed for the 1, 2, and 3-PCM comparison. All three 

cases have the same potential storage capacity of 146.8 MWh. 

#PCMs  

(Case #) 

tCh/tDch 

(min) 

EDischarged 

(MWh) 

ExDischarged 

(MWh) 

Capacity 

Ratio 
Utilization 

Ratio 

ηExOverall 

1  182/206 104.7 58.7 0.564 0.558 0.979 

2  258/244 125.1 70.2 0.859 0.729 0.955 

3 292/285 149.1 83.9 0.948 0.883 0.966 

 

3.3.2.1 Two-PCM Cascaded System  

Three sets of analyses are conducted for the two-PCM system parametric study. Aside from 

varying the latent heat, the effect of the PCM volume fraction is investigated. The first analysis assumes 

that the latent heat is equivalent for both PCMs in order to isolate the impact of volume fraction. The 

melting points are based on the results of Analysis 1 of section 3.3.1. The objective is to select values that 

maximize storage and enable complete recovery of energy at the high exergy state. As previously 

mentioned, the top PCM must be greater than the discharging cut-off temperature (TDch,cut-off = 493°C/ 

θDch,cut-off = 0.74). As the melting point decreases, the pinch point interface can travel at a higher rate down 

the bed, lengthening the hot zone; therefore the top PCM would also benefit by being furthest from the 

inlet HTF temperature. Thus the top PCM phase transition temperature was selected as 495°C, which lies 

just above the discharging cut-off value and corresponds to a normalized melt temperature of 0.747. 

The bottom PCM should be less than the charging threshold value  of TCh,cut-off = 396°C (θCh,cut-off 

= 0.39). When the melting point was slightly less than this temperature, 96% of the bed reached the high 

exergy state, hence a melting point of 395°C was selected for the bottom PCM. This corresponds to a 

normalized melt temperature of 0.386. The latent heat of both PCMs was assigned the same value as the 
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NaCl/K2SO4 eutectic, which is 187000 J/kg and corresponds to an Inverse Stefan number of 0.64. Figure 

41 illustrates the division of PCM volume for the cases under study. 

The second and third analyses examine the effect of latent heat on the systems of the first 

analysis. The second analysis assigns a high latent heat to the bottom PCM and the third analysis assigns 

a high latent heat to the top PCM. The high latent heat was arbitrarily chosen as twice the value of the 

eutectic. All other conditions remain the same as in the first analysis. Table 14 provides the conditions of 

each case. 

 

 

 

 

 

 

 

 

 

 

Figure 41. Schematic illustrating the division of PCM volume fraction (V.F.) for the cases evaluated in 

cascade analysis 1. A tank volume of 650 m
3
 and tank diameter of 10.593 m is used for each case.  

 

 

Table 14. Assigned volume fraction, latent heat, and phase change temperature for the cases assessed in 

the 2-PCM cascade system study. 

  Top PCM  

(θmelt = 0.747) 

Bottom PCM  

(θmelt = 0.386) 

Analysis # Case # InvSte Fraction 

Occupied 

InvSte Fraction 

Occupied 

1 

1 0.64 2/3 0.64 1/3 

2 0.64 1/2 0.64 1/2 

3 0.64 1/3 0.64 2/3 

 

PCM 1 
InvSte = 0.64 

V.F. = 2/3 

 

TCh,In 

TDch,In 

PCM 2 
InvSte = 0.64 

V.F. = 1/3 

PCM 1 
InvSte = 0.64 

V.F. = 1/2 

 

TCh,In 

TDch,In 

PCM 2 
InvSte = 0.64 

V.F. = 1/2 

PCM 1 
InvSte = 0.64 

V.F. = 1/3 

 

TCh,In 

TDch,In 

PCM 2 
InvSte = 0.64 

V.F. = 2/3 
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Table 14 (continued) 

2 

4 0.64 2/3 1.28 1/3 

5 0.64 1/2 1.28 1/2 

6 0.64 1/3 1.28 1/3 

3 

7 1.28 2/3 0.64 1/3 

8 1.28 1/2 0.64 1/2 

9 1.28 1/3 0.64 2/3 

 

Table 15. Steady state system output and performance indicators for the cases of PCMs with equivalent 

latent heat. 

Case 

# 

 tCh/tDch 

(min) 

EDischarged 

(MWh) 

ExDischarged 

(MWh) 

Capacity 

Ratio 
Utiliz. 

Ratio 

ηExOverall QbedMax 

(MWh) 
t T≥99% 

(min) 

1 285/292 142.64 79.62 0.837 0.824 0.960 146.8 72 

2 331/317 159.34 89.27 0.947 0.930 0.960 146.8 105 

3 340/283 150.42 84.85 0.987 0.882 0.959 146.8 151 
 

Table 16. Steady state characteristics of 2-PCM cascade systems which assume a high latent heat in the 

bottom PCM.  
Case 

# 

 tCh/tDch 

(min) 

EDischarged 

(MWh) 

ExDischarged 

(MWh) 

Capacity 

Ratio 
Utiliz. 

Ratio 

ηExOverall QbedMax 

(MWh) 
t T≥99% 

(min) 

4 279/356 175.33 97.98 0.935 0.920 0.948 168.7 99 

5 387/330 171.28 96.35 0.891 0.834 0.955 179.7 149 

6 367/284 150.90 85.13 0.986 0.700 0.950 190.7 152 

 

 

Table 17. Steady state characteristics of 2-PCM cascade systems which assume a high latent heat in the 

top PCM.  
Case 

# 

 tCh/tDch 

(min) 

EDischarged 

(MWh) 

ExDischarged 

(MWh) 

Capacity 

Ratio 
Utiliz. 

Ratio 

ηExOverall QbedMax 

(MWh) 
t T≥99% 

(min) 

7 285/304 142.80 79.30 0.659 0.645 0.956 190.7 41 

8 332/341 160.51 89.16 0.798 0.783 0.953 179.7 49 

9 380/363 178.17 99.52 0.946 0.928 0.955 168.7 93 
 

The performance indices and system output of cases 1 - 3 are provided in Table 15. The steady 

state charging time, discharging time, recovered energy, and recovered exergy during the discharging 

process are given. The table also supplies the time period in which the HTF exits the system at a high 

exergy state, denoted as tT≥99%. This is deemed a value greater than or equal to 99% of the hot system 

operating temperature, therefore HTF exiting the system between 565°C and 560°C is categorized as 

energy recovery at the high exergy state. All configurations show a gain in energy and exergy output 
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when compared to the single PCM cases and the SHS packed bed case. The configuration in which each 

PCM occupies half of the volume fraction (case 2) results in the highest energy output of 159.34 MWh, a 

71.3% increase over the SHS packed bed system.  

Figure 42 provides the HTF exit temperature  as a function of time for all three cases. The figure 

illustrates that the volume fraction has a significant impact on the distribution of recovered energy. As the 

volume fraction of bottom PCM increases, the high exergy recovery time increases. As was discussed in 

the previous section, the top PCM must be completely molten before the pinch point interface can 

collapse, allowing the hot zone to proceed down the bed. Therefore less top PCM facilitates greater 

storage at the hot operating temperature. Alternatively, the bottom PCM serves as a buffer, staving off the 

saturation condition. Thus increasing the volume fraction of the bottom PCM while decreasing that of the 

top PCM allows the system to charge for a longer time period and recover more energy at the higher 

exergy state. Though case 2 produces the highest energy output, when compared to case 3 it exhibits a 

44% reduction in time in which the HTF exits the system at the high exergy state.  

 

Figure 42. Temporal progression of the HTF exit temperature for cases 1 through 3 of the 2-PCM cascade. 

 

This analysis demonstrates that an advantage of the 2-PCM cascade is the extended energy output 

at the top PCM melting temperature. The system with the greatest fraction of bottom PCM (case 3) 

releases HTF at the high exergy state in the same time frame as a single-PCM system consisting purely of 
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the bottom PCM. The 2-PCM system benefits however, by the subsequent release of HTF at the melting 

temperature of the top PCM, which can be used to produce electricity under partial load conditions. 

Therefore the 2-PCM system of case 3 benefits from a 45.5% increase in energy output over the single-

PCM system and a 61.7% increase above the SHS packed bed system. Cases 1 through 3 are able to 

recover approximately 96% of the net exergy that enters the system, as demonstrated by their overall 

exergy efficiency. 

Table 16 provides the system characteristics of the 2-PCM cascade for the scenario wherein the 

highest latent heat is exhibited in the bottom PCM. Similar to the above scenario, the advantage of a large 

volume fraction of low melting PCM is manifested as an increase in high exergy recovery time, as 

demonstrated in Figure 43. The augmented latent heat in the bottom PCM enhances the system’s ability to 

store and release more energy, however the degree of the gain decreases as the fraction of bottom PCM 

increases. For instance, the highest volume fraction of bottom PCM is assumed in cases 3 and 6, and there 

is little improvement in energy output between these two cases. In case 5, each PCM occupies an equal 

fraction of the bed and this scenario capitalizes the most on the individual benefits of a low melting PCM 

with augmented latent heat and a high melting PCM. For this case, the latent heat of the bottom PCM is at 

a value that is large enough to extend the charging time to a point that complete melting of the top PCM 

can occur. Though cases 5 and 6 harness similar values of energy at the elevated exergy state for instance, 

the larger fraction of top PCM in case 5 additionally allows the HTF to discharge more energy at the 

melting temperature of the top PCM.  

Table 17 provides the characteristics of the 2-PCM cascade system that incorporates a higher 

latent heat PCM at the top of the system. These systems experience an extended stage of HTF exiting at 

the top PCM melting temperature rather than at the high exergy state, as demonstrated in Figure 44. Case 

9, which has the lowest fraction of top PCM, experiences the largest discharge time of all nine cases, thus 

releasing the highest amount of energy and exergy.  
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Figure 43. Temporal progression of the HTF exit temperature for cases 4 through 6 of the 2-PCM 

cascade. 

 

 
Figure 44. Temporal progression of the HTF exit temperature for cases 7 through 9 of the 2-PCM cascade. 

 

 

The above assessment was used as a basis in understanding the effect of volume fraction and 

latent heat on the output of a 2-PCM cascade under the assigned parametric combination. A plant-level 

study that examines annual power production would provide a more quantitative guide on the benefits and 

drawbacks of various cascade design conditions. Each 2-PCM system showed an enhancement in energy 

and exergy output over the single-PCM systems, and all demonstrated overall exergy efficiencies of 

approximately 95% or higher. When the bottom PCM occupied a larger fraction of the bed than the top 

PCM, the system released more energy at the hot operating temperature. Increasing the latent heat of the 
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bottom PCM improves this condition for the remaining cases in which the bottom PCM occupies a lower 

fraction. Increasing the latent heat of the top PCM compromises the high exergy release by lengthening 

HTF output at the melting temperature of the top PCM. Though all systems shared high performance in 

terms of second law efficiency and exhibited higher energy output than the single PCM cases, they 

expressed varying degrees in the quality of energy they can harness. 

3.3.2.2 Three-PCM Cascaded System  

As the number of PCMs in a cascaded system increases, the thermodynamic advantages are more 

pronounced [72, 75]. Thus a 3-PCM system should exhibit a greater second law efficiency than a 2-PCM 

system. The following parametric study evaluates the effect of latent heat on the performance and output 

of a 3-PCM cascade system. Each PCM occupies 1/3 of the bed and the phase change temperature 

decreases in value from the top to the bottom of the system. Similar to the 2-PCM parametric analysis, the 

systems adopt the same characteristics of the baseline LHShigh case, which were provided in Table 8. The 

first case assumes all 3 PCMs possess the same latent heat value. The next three cases, B – D, shift the 

high latent heat PCM from one cascade to the next, and the final three cases, E – G, apply the high latent 

heat PCM to two of the cascades in order to understand if there is any advantage in energy output. Table 

18 provides the cases under evaluation. The melting points of the top and bottom PCM are equivalent to 

that of the 2-PCM parametric study (Tmelt,top = 495°C, Tmelt,bottom = 395° ), and the middle PCM is assigned 

a normalized melt temperature of 0.50 (Tmelt,middle = 426.5°C). 

 

Table 18. Assigned latent heat and phase change temperature for the cases assessed in the 3-PCM cascade 

system study. 

Case # Top PCM 

(θmelt = 0.747) 

Middle PCM 

(θmelt = 0.50) 

Bottom PCM 

(θmelt = 0.386) 

A InvSte = 0.64 InvSte = 0.64 InvSte = 0.64 

B InvSte = 0.64 InvSte = 0.64 InvSte = 1.28 

C InvSte = 0.64 InvSte = 1.28 InvSte = 0.64 

D InvSte = 1.28 InvSte = 0.64 InvSte = 0.64 

E InvSte = 0.64 InvSte = 1.28 InvSte = 1.28 

F InvSte = 1.28 InvSte = 0.64 InvSte = 1.28 

G InvSte = 1.28 InvSte = 1.28 InvSte = 0.64 
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Figure 45 provides the progression of the phase change front for the system in which all PCMs 

possess the same latent heat (case A). Figure 45(a), (c), and (e) illustrates the steady state charging 

process and Figure 45(b), (d), and (f) illustrates the steady state discharging process. The system charges 

in 352 minutes and can store 98.7% of its maximum potential storage capacity of 146.8 MWh. 

Discharging completes in 320 minutes, at which point the system recovers 166.88 MWh, resulting in a 

utilization ratio of 0.968 and overall exergetic efficiency of 96.4%. Figure 45 shows that at 120 minutes 

of charging, the top PCM is in the process of changing phase and by 240 minutes, the top PCM is 

completely molten. At this point, the sub-solidus front has exited the bed yet the bottom PCM remains 

below the charging threshold temperature, allowing the system to continue charging. The high capacity 

ratio of 98.7% is depicted in the final charging state, which shows that most of the bed reaches the hot 

inlet temperature. During the discharging process, the HTF exits the top of the bed at the high exergy state 

at 120 minutes. By 240 minutes, the HTF is exiting at the melting temperature of the top PCM and the 

pinch point zone of the middle PCM has shifted to the top cascade. By the final discharging time, most of 

the energy is depleted from the system. Due to the high degree of energy depletion at the end of the 

discharging process, the system immediately reaches steady state. This represents a nearly ideal scenario 

in which the system can store and recover a significant portion of the bed’s potential storage capacity. 

Figure 46 provides the temporal variation of the outlet HTF temperature for the 3-PCM cascade of case A 

and the 2-PCM cascade of case 1, both having the same potential storage capacity. The figure illustrates 

the benefit of the 3-PCM cascade. The middle PCM serves as a buffer during the discharging process, 

allowing the system to extract more energy from the top PCM.  



www.manaraa.com

82 

 

 
a.                                                                               b.    

        
                                                c.                     d. 

 
                                                 e.           f. 

 

Figure 45. Steady state HTF axial temperature profile for a 3-PCM cascaded system. All PCMs have 

equivalent latent heat. 48(a), (c), and (d) provide the charging temperature profile of the HTF fluid at 120 

minutes, 240 minutes, and the final state. 48(b), (d), and (f) illustrate the discharging HTF temperature 

profile for the same states. The arrows in (a) and (b) indicate the direction in which the phase change front 

moves. 

 

Top of bed Bottom 

Top of bed Bottom 
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Figure 46. HTF exit temperature as a function of time for a 2-PCM and 3-PCM cascade of equivalent 

storage capacity. 

 

 

Tables 19 and 20 provide the characteristics of the remaining 3-PCM cascade systems. Similar to 

the 2-PCM cascaded systems, the value of the latent heat has an impact on system output, which is a 

combined effect of the behavior during charging and discharing mode. Figure 47 provides the outlet HTF 

temperature profile over time for the cases in which the high latent heat was assigned to a single PCM. 

The outlet temperature profile of cases B and C are nearly identical and in both systems, the top PCM has 

a low latent heat value. Figure 48 provides the final charging and discharging state of cases B, C, and D. 

Cases B and C, which have the augmented latent heat in the bottom and middle PCM respectively, exhibit 

high capacity ratios, yet are not able to completely discharge all of the energy, as seen in the final 

discharging state figure. The case with the high latent heat in the top PCM, case D, does not completely 

reach the hot inlet temperature yet is able to recover the most energy of all three cases. 

When the middle and bottom PCMs have the high latent heat value (case E), the system behaves 

in the same manner as the condition in which only the bottom PCM has a high latent heat (case B). The 

remaining two scenarios, wherein the middle PCM has the low latent heat (case F) and the bottom PCM 

has the low latent heat (case G), exhibit the greatest benefit over all other 3-PCM systems and the 2-PCM 
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systems. They have a large potential storage capacity and demonstrate high capacity and utilization ratios, 

thus these last two cases deliver the largest quantity of energy and exergy. Figure 49 provides the 

temporal outlet HTF profile for cases E, F, and G. 

 

Table 19. Steady state characteristics of each case assessed in the 3-PCM cascade wherein one of the three 

PCMs is assigned a high latent heat. 

Case 

# 

 tCh/tDch 

(min) 

EDischarged 

(MWh) 

ExDischarged 

(MWh) 

Capacity 

Ratio 
Utiliz. 

Ratio 

ηExOverall QbedMax 

(MWh) 
t T≥99% 

(min) 

B 394/326 169.57 95.41 0.985 0.895 0.947 168.7 152 

C 391/325 168.96 95.06 0.987 0.889 0.951 168.7 151 

D 382/364 178.98 99.99 0.947 0.931 0.957 168.7 105 

 

Table 20. Steady state characteristics of each case assessed in the 3-PCM cascade wherein two of the 

three PCMs are assigned a high latent heat. 

Case 

# 

 tCh/tDch 

(min) 

EDischarged 

(MWh) 

ExDischarged 

(MWh) 

Capacity 

Ratio 
Utiliz. 

Ratio 

ηExOverall QbedMax 

(MWh) 
t T≥99% 

(min) 

E 404/326 169.57 95.41 0.986 0.803 0.949 190.7 152 

F 462/412 207.73 116.44 0.985 0.971 0.953 190.7 151 

G 462/415 208.80 117.01 0.987 0.972 0.958 190.7 150 

 

 

Figure 47. HTF exit temperature as a function of time for 3-PCM systems B – D. 
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        a.                                   b. 

Figure 48. The final steady state axial HTF profile of 3-PCM cases B-D. 48(a) provides the final charging 

state and (b) provides the final discharging state. These systems exhibit the augmented latent heat in one 

of the PCMs of the cascade. 

 

 

 

Figure 49. Outlet HTF temperature profile as a function of time for the 3-PCM cases E-F. Two PCMs in 

these systems exhibit the augmented latent heat value. 

 

The above analysis is based on a specific parametric combination, as well as specific charging 

and discharging cut-off criteria. Under the assumed melting point combination, latent heat values, and 

PCM volume fraction, the advantages of a 3-PCM cascade surpassed that of the 2-PCM cascade when 

both held the same potential storage capacity. Nearly all 3-PCM systems could recover the maximum 

quantity of energy at the hot operating temperature, and benefited by extended release of energy at the 

melting temperature of the top PCM. The only exception was the case wherein the top PCM had the 
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augmented latent heat (case D). This system released the HTF at the hot operating temperature for 105 

minutes whereas the remaining cases did so in approximately 150 minutes. 

The overall exergetic efficiency of the 3-PCM systems was not necessarily higher than the 2-

PCM systems, and all cascaded systems demonstrated a decrease in exergy efficiency when compared to 

the SHS packed bed system and the single PCM cases. Though the second-law efficiency has previously 

been shown to improve with the increase in number of cascades, both charging and discharging cut-off 

conditions were not necessarily invoked. These threshold conditions determine and limit the quality of the 

flow stream as it exits the bed and affect the charging and discharging times, therefore they play a role in 

the amount of exergy that is stored, released, and lost.  

This evaluation emphasizes the need to conduct carefully orchestrated studies on the design of 

packed bed LHS storage systems. The quantity and quality of useful energy that is recovered from a 

system are strongly influenced by the phase transition temperature, latent heat, and amount of PCM. 

These parameters should be judiciously chosen to maximize any gains that an be realized by employing a 

LHS packed bed system. 

3.3.3 Analysis 3: LHS System Study with Realistic Parameters 

The previous studies assumed a hypothetical PCM that adopted the same thermophysical 

properties as the SHS packed bed system. The current study compares the performance and tank 

requirements of the SHS packed bed system and a LHS system with a real salt PCM. The LHS system 

uses the NaCl/K2SO4 eutectic and its associated thermal properties. The PCM characteristics are provided 

in Table 21.  The density and specific heat capacity of the solid and liquid phases were determined by a 

weighted summation of the properties of each individual component. Specific heat capacity values were 

obtained from the NIST WebBook [76] and density data were compiled from Janz [77]. Solid and liquid 

thermal conductivities could not be found in the literature, therefore a conservative value of 1 W/(m-K) 

was assumed and was based on the thermal conductivities of the NaCl and KCl in the solid phase.  
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Table 21. Thermal and  physical properties of the LHS system evaluated in Analysis 3. 

Parameter Value 

Porosity 0.35 

Cp,PCM,solid 980 J/kg-K 

Cp,PCM,liquid 1130 J/kg-K 

ρ,PCM 1690 kg/m3 

k, PCM 1.0 W/m-K 

Latent heat 187000 J/kg 

PCM shell thickness 0.00045 m 

PCM shell thermal conductivity 13.94 W/m-K 

 

Table 22 provides the parametric combination for both LHS and SHS systems of Analysis 3. In 

comparing the two systems, many differences become evident and these disparities may manifest in either 

an improvement or penalty in efficiency and system output. The LHS system employs a higher porosity, 

however this value is a more reasonable estimate for a randomly packed bed of spheres [78]. The low 

level achieved in the original SHS experiments by Pacheco et al. [36] was made possible by combining 

two types of particles that possessed different diameters. The thermal conductivity of the PCM is lower 

than the SHS case, yet this is closer to values that salts typically exhibit [79]. The particle diameter is 

larger in the LHS system and was chosen as a balance between ease in fabrication at a laboratory scale 

and maximizing heat transfer. This value can vary from system to system.   

Table 22. Material properties implemented in Analysis 3. 

Parameter SHS system LHS system 

Porosity 0.22 0.35 

Thermal conductivity 5 W/(m-K) 1 W/(m-K) 

Inner particle diameter  19.05 mm 26.53 mm 

Solid specific heat capacity  830 J/(kg-K) 980 J/(kg-K) 

Liquid specific heat capacity - 1130 J/(kg-K) 

Solid density 2500 kg/m
3
 2088 kg/m

3
 

Liquid density - 1689 kg/m
3
 

Volumetric heat capacity Solid: 2075 kJ/(m
3
-K) 

- 

Solid: 2046.24 kJ/(m
3
-K) 

Liquid: 1908.57 kJ/(m
3
-K) 

 

Prior to evaluating the systems under their respective realistic conditions of Table 22, each 

parameter of the LHS system was varied one at a time while all other parameters were kept constant in 

order to isolate the respective parameter’s effect on the output of the system. Porosity, density, heat 

capacity, thermal conductivity, and particle diameter were each varied from the value of the SHS system 
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to the value of the LHS system of Table 22. The resulting performance metrics, energy output, and heat 

transfer characteristics of each run are provided in Table 23. The baseline case is the LHS system of 

Analysis 1, which had the same properties of the SHS but with the addition of latent heat. All properties 

were then combined and the SHS and LHS systems compared.  The tank volume, height, and diameter of 

each run are respectively 650 m
3
, 7.376 m, and 10.593 m, all corresponding to the baseline case.  

 

Table 23. Steady state system characteristics for each case in the single parameter study. 
Altered 

parameter 

tCharge/ 

tDischarge 

(min) 

Eout 
(MWh) 

Mass 

PCM 

(kg) 

Mass 

HTF 

(kg) 

hp 

(W/m2K) 
keff 

(W/mK) 

Utilization 

Ratio 

η Overall 

Exergy  

Baseline 181/205 104.68 1267500 260085 261.9 2.958 0.558 0.979 

ρPCM 160/182 93.03 1058616 260085 261.9 2.958 0.522 0.982 

kPCM 178/201 102.62 1267200 260085 189.6 0.508 0.551 0.978 

Porosity 189/213 109.61 1056250 413771 261.9 2.111 0.582 0.981 

Cp,PCM 203/228 117.38 1267200 260085 261.9 2.958 0.582 0.980 

Di 179/202 103.06 1267500 260085 213.9 2.958 0.549 0.978 

All parameters 181/200 103.80 882180 413771 148.6 0.507 0.534 0.979 

 

As the thermal conductivity decreases from 5 W/(m-K) to 1 W/(m-K), the thermal energy output 

decreases by 2%. The reduced effective thermal conductivity and heat transfer coefficient result in a wider 

thermocline zone, which decreases the charging and discharging time since the threshold temperatures are 

reached more rapidly, resulting in a drop in useful energy output. The change in overall exergetic 

efficiency and utilization ratio are negligible at steady state. 

   Though the effect of thermal conductivity has been studied in sensible heat storage packed bed 

systems, there has not been a study of its effect on latent heat storage systems. Thus a quick discussion is 

included for the sake of completion. In Hanchen et al. [18], the thermal conductivity of a SHS packed bed 

system had a very minor influence on the charging, discharging, and overall efficiencies as well as the 

capacity factor. In Aly and El-Sharkawy [24], the thermal conductivity was varied across a wide range 

(0.5 W/m-K – 200 W/m-K) for the charging process in a SHS packed bed system. The authors 

demonstrated that effects were initially significant at high values of thermal conductivity, yet as the 
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storage media quickly reached its storage capacity, the heat transfer rate diminished and after a certain 

point in time, the media with low thermal conductivity stored energy at a higher rate.  

For the current simulation, the thermal conductivity can influence axial conduction through its 

role in thermal diffusivity, however it also appears in the effective heat transfer correlation through the 

Biot number. Therefore the thermal conductivity can influence convective heat transfer via thermal 

resistance within the PCM, unlike in the aforementioned sensible heat studies. To assess the degree of this 

effect, the thermal conductivity was varied between 0.5 W/(m-K) and 20 W/(m-K) while all other 

parameters remained at their nominal values.  Figure 50 illustrates the variation in useful energy extracted 

from the system at steady state as well as the overall exergy efficiency. The figure demonstrates that the 

efficiency hovers near 98% for each case, and the energy output does grow with an increase in thermal 

conductivity, however it levels off at 5 W/(m-K) after which, the energy output varies to an almost 

negligible degree. Many salt PCMs possess low thermal conductivity (i.e. less than 5 W/(m-K)), therefore 

the high surface area of packed bed configurations serves as an enhancement mechanism for heat transfer. 

The significance of the slight gain in energy output may or may not warrant additional measures to 

enhance the PCM thermal conductivity and would depend upon the economic tradeoff between energy 

output and material/manufacturing costs of the enhancement technique. 

 

Figure 50. Effect of PCM thermal conductivity on recovered energy and overall exergy efficiency. 
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As expected, the increase in particle diameter reduces the energy discharged from the system due 

to the decrease in surface area per unit volume (i.e. a 28% reduction) and thus lower convective heat 

transfer rate and higher conductive resistance. The energy discharged from the system drops from 104.68 

MWh to 103.06 MWh, a mere 1.6% reduction. The change in second law efficiency is also negligible. 

For the same tank volume and porosity, the decrease in density of the PCM reduces its mass and 

maximum potential storage capacity by 16.5% while maintaining the same mass of HTF. With the same 

rate of energy entering the system, the low density case has less energy capacity per unit volume, 

therefore less energy is removed from the HTF and it reaches the charging threshold temperature in a 

shorter amount of time than the baseline case. This results in an 11.1% drop in useful energy extracted 

from the baseline case at steady state. 

The increase in specific heat capacity augments the useful energy discharged from the system by 

12.1% from the baseline case. This increase is a consequence of the enhanced thermal inertia caused by 

the larger storage capacity during the sensible heating phases, which delays the system from reaching the 

threshold charging and discharging temperatures. The sensible energy capacity increases from the 

nominal value of 416.9 kJ/kg to 465.9 kJ/kg, i.e. an 11.7% increase, over the operating temperature range 

of the system. 

In maintaining a constant tank volume, augmenting the porosity from 0.22 to 0.35 reduces the 

mass of the PCM with a concomitant increase in mass of HTF. Similar to the effect of decreasing the 

PCM density, the lower PCM mass reduces the energy capacity per unit volume in the storage media. By 

increasing the porosity however, the additional mass of HTF supplements the stored energy in the system 

and this storage capacity is not inhibited by the phase change process, which tends to serve as a bottle 

neck in heat transfer as discussed in the previous sections. Figure 51 demonstrates that the potential 

storage capacity of the system decreases as the bed voidage increases. This is contrary to the way the 

system actually behaves at steady state. As the porosity increases, the total stored energy simultaneously 

grows, as illustrated in Figure 52. This contradiction between the hypothetical trend versus the simulated 
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trend emphasizes the need to conduct detailed systems level studies. Though LHS systems seem 

thermodynamically favorable, they are plagued by limitations in the dynamics of heat transfer. 

 

Figure 51. Effect of bed porosity on potential energy storage capacity. The figure includes the individual 

contribution of storage capacity due to the HTF and PCM. 

 

 

Figure 52. Effect of bed porosity on actual energy stored in the system at steady state. The figure includes 

the individual contribution of storage due to the HTF and PCM. 

 

After combining all parameters such that the LHS system has the characteristics as defined in 

Table 22, the final useful energy discharged from the system is slightly less than the baseline case. The 

increase in porosity and specific heat capacity, which appreciably increased the energy output, were 

dwarfed by the adverse effects of reduced density, and reduced convective and conductive heat transfer 

due to the smaller particle diameter and lower thermal conductivity, respectively. Though not included in 
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the table, the cumulative influence of density and specific heat capacity was investigated by merging the 

two as the volumetric heat capacity. This system produced 103.5 MWh at steady state, which is a 1.1% 

departure from the baseline case.  Though the specific heat capacity had the strongest impact on 

increasing the output of the system, the low density suppressed this response. 

In order to compare the SHS and LHS systems using realistic parameters, the SHS tank was sized 

such that it produced the equivalent useful energy discharged as the LHS system. The characteristics of 

each system are summarized in Table 24. 

 

Table 24. LHS and SHS system performance indicators and sizing requirements for equivalent energy 

output at steady state. 

 

 Bed 

Height 

(m) 

Bed 

Volume 

(m
3
) 

Mass 

PCM 

(kg) 

Mass 

HTF  

(kg) 

Util. 

Ratio 

ηExOverall QbedMax 

(MWh) 

Exdischarge 

(MWh) 

Edischarge 

(MWh) 

SHS system 8.193 722 1407900 288894 0.856 0.992 90 59.6 104.7 

LHS system 7.427  654.5 888287 1864081 0.534 0.982 115 58.9 104.8 

 

The LHS system increases slightly in volume from the hypothetical case to accommodate the 

parametric combination of the realistic case. The SHS packed bed system requires a larger volume and 

storage media mass to meet the discharged energy requirement. As shown in Figure 53, both systems 

complete the charging process in approximately the same amount of time, with the SHS system 

completing in 184 minutes and the LHS system in 183 minutes, therefore nearly the same amount of 

exergy enters the systems. Figure 54 provides the outlet HTF temperature of the LHS and SHS systems 

for the discharging process. The temporal variation in discharging outlet temperature of the LHS system 

shows a step response associated with the moving solidification front. The discharging process completes 

in 202 minutes. The SHS system maintains the outlet discharging temperature near THTF,h  for an extended 

period of time before declining as the thermocline zone exits from the top of the bed, at which point 

discharging terminates in 180 minutes. The extended period of high outlet temperature allows the system 
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to provide the same quantity of energy, yet slightly higher quantity of exergy above the LHS case despite 

the fact that the discharging time is lower for the SHS system. 

 

Figure 53. Outlet HTF temperature as a function of time for the LHS and SHS packed bed systems during 

the steady state charging process. 

 

 

 

Figure 54. Outlet HTF temperature as a function of time for the LHS and SHS packed bed systems during 

the steady state discharging process. 

 

In the LHShigh system of Analysis 1, it was shown that the addition of latent heat increased the 

potential storage capacity of the system, yet a small fraction of this addition was exploited. Additionally, a 

higher fraction of the sensible heat capacity was utilized in the LHS system than in the SHS system due to 
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the large degree of depletion during discharging. In the current scenario, the LHS system has a higher 

porosity, thus a large fraction of the energy extracted from the system is due to the storage capacity of the 

HTF. Of the 104.8 MWh extracted at steady state, 43.4 MWh (41.4% of the total) was due to the HTF, 

49.1 MWh (46.9% of the total) was released as sensible heat, and 12.3 MWh (11.7% of the total) was 

released as latent heat. The degree of depletion is slightly lower and this is likely due to the thicker 

thermocline zone, which is a result of the larger particle diameter and lower thermal conductivity. Though 

lower than the baseline case of Analysis 1, the degree of discharge depletion is still greater than the SHS 

system, as illustrated in Figure 41, which provides the axial variation in HTF fluid temperature for 

consecutive charging and discharging states of the two systems. 

All of the above cases exhibited high overall exergy efficiencies of approximately 98% or greater 

at steady state, therefore they performed well and demonstrated minimal exergetic losses over the course 

of a steady state cycle. This metric does not give an accurate assessment of the behavior or utilization of 

the system however. The LHS system required a smaller tank size, which would be a benefit in terms of 

cost, yet it is not able to tap into its full storage capacity, therefore the major benefit of reduced storage 

material cost is compromised. Thus the economic assessment is used to compare the cost benefit of the 

PCM system. Prior to doing so, a 3-PCM cascaded system study with salt PCMs ensues.  
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     a.                b. 

Figure 55. Steady state axial temperature profile at consecutive charging times for a) the SHS system, and 

b) the LHS system. 

 

         

  a.                 b. 

Figure 56. Steady state axial temperature profile at consecutive discharging times for a) the SHS system, 

and b) the LHS system. 
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3.3.3.1 Three-PCM Cascaded System with Salt PCMs  

A cascaded system with three potential PCMs is analyzed using the porosity and particle diameter 

of the realistic LHS system scenario. Three salts were selected based on their phase change temperature 

and latent heat of fusion. The top PCM remained as the NaCl/K2SO4 eutectic, and Kenisarin’s [79] 

extensive review of high temperature PCMs served as a guide in selecting the two remaining materials. 

Many PCMs were dismissed, including metals and lithium and fluoride salts due to their high cost. For 

instance, lithium carbonate has a relatively high thermal conductivity and specific heat capacity, and 

demonstrates greater thermal stability than some chlorides, yet the salt can exceed $4000/metric ton [80]. 

Potassium nitrate was excluded as a bottom PCM due to its low latent heat value. A MgCl2/NaCl salt 

mixture was chosen as the middle PCM, primarily for its cost and availability of thermal properties. The 

latent heat of fusion/solidification as well as the melting/solidification temperatures were characterized in 

Trahan et al. [81]. For similar reasons, a KCl/MgCl2/NaCl eutectic was chosen as the bottom PCM. The 

ternary eutectic was investigated by Gomez [82], who provided the melting/solidification temperatures 

and the latent heat values. The density and specific heat capacity of the middle and bottom PCM were 

estimated by a molar weighted average of the pure component properties, which were collected from the 

NIST Database [76, 77]. This method is found to be fairly accurate when compared to experimental 

measurements [83]. The individual solid thermal conductivities at elevated temperature were not 

available, therefore the same value of 1 W/m-K for the solid and liquid phases of the top PCM was 

assumed. This is close to the values that were defined for the binary eutectic in Kenisarin [79] and 

simplifies the analysis. It should be noted that magnesium chloride has handling and stability issues that 

are caused by its hygroscopic nature [81], however it was demonstrated in Zhao et al. [84] that it is 

suitable for use as a high temperature phase change material. For reference, Nemecek et al. [85] evaluates 

the ternary eutectic’s use as a latent heat storage material and discusses its handling and drying procedure. 

Calcium chloride is also plagued by the same challenges. The final characteristics of the system are 

provided in Table 25. 
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Table 25. PCM properties and bed characteristics for the 3-PCM cascade system that employs real PCMs. 

 Top PCM 
32wt% NaCl- 

68% K2SO4 

Middle PCM 
55 wt% MgCl2 – 45% 

NaCl 

Bottom PCM 
59.98 wt% MgCl2 – 

20.42% KCl – 19.6% NaCl 

Melting temperature [°C] 515 439.8
*
 382.1

*
 

Solidification temperature [°C] 515 429.8
*
 390.9

*
 

Latent heat of fusion [kJ/kg] 187 214.9
*
 197.6

*
 

Latent heat of solidification [kJ/kg] 187 162.9
*
 183.7

*
 

Solid density [kg/m
3
] 2088 2109 2118 

Liquid density [kg/m
3
] 1130 1604 1607 

Solid thermal conductivity [W/m-K] 1.0 1.0 1.0 

Liquid thermal conductivity [W/m-K] 1.0 1.0 1.0 

Solid specific heat capacity [J/kg-K] 980 1005 928 

Liquid specific heat capacity [J/kg-K] 1130 1096 1035 

* Values were obtained from the third heating/cooling cycle of the DSC/TGA measurements of the 

respective reference. 

 

Table 26. Steady state characteristics of the 3-PCM cascade with salts. The first row provides the 

characteristics of a tank equal in size to the baseline single PCM case, and the second row is sized to 

provide the same energy output as the baseline case. 

Tank size 

(m
3
) 

tCh/tDch (min) EDischarged 

(MWh) 

Utiliz. 

Ratio 

ηExOverall QbedMax 

(MWh) 

650 266/234 128.1 0.614 0.935 119.8 

536.5 218/192 104.8 0.606 0.936 98.9 

 

 

Table 27. LHS and SHS system performance indicators and sizing requirements for equivalent energy 

output at steady state of realistic storage systems. The PCM mass of the 3-PCM system is the total mass 

of all 3 PCMs combined. The top PCM mass required 242,713 kg, the middle PCM required 245,154 kg, 

and the bottom PCM required 246,200 kg. The Utilization ratio and QbedMax are based on the average 

heat capacity of the PCMs and the latent heat of melting. 

 

 Bed 

Height 

(m) 

Bed 

Volume 

(m
3
) 

Mass 

PCM 

(kg) 

Mass  

HTF (kg) 

Utiliz. 

ratio 

ηExOverall QbedMax 

(MWh) 

Estored in 

Solid 

(MWh) 

Edischarge

d 

(MWh) 

SHS system 8.193 722 1407900 288894 0.856 0.992 90 77 104.7 

1-PCM LHS  7.427  654.5 888287 416636 0.534 0.982 115 61 104.8 

3-PCM LHS 6.088 536.5 734066 341520 0.606 0.936 98.1 60 104.8 

 

Table 26 provides the characteristics of the 3-PCM cascade with salts for two different scenarios. 

The utilization ratio and maximum potential storage capacity of the bed are based on the latent heat of 

fusion and average specific heat capacities of the salts. The first row demonstrates the energy output if the 

system has the same tank size as the baseline case and all of the cascaded systems that were studied, i.e. a 
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size of 650 m
3
. The system provides 128.1 MWh and is able to utilize 67.2% of the potential storage 

capacity. The same size tank filled with capsules of the NaCl/K2SO4 eutectic only, produced 103.8 MWh 

and had a utilization ratio of 53.4%. Thus the 3-PCM cascade increased the potential energy output by 

23.4%. The exergy efficiency decreased however. Table 27 presents the final tank dimensions, mass 

requirements, and performance indicators for the three realistic systems that are going to be evaluated in 

the economic analysis of the following chapter. 
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CHAPTER 4: ECONOMIC ANALYSIS 

 

 

4.1 Introduction 

The goal of the previous chapter was to compare the performance and system output of SHS and 

LHS packed bed systems using conditions that may be realistically encountered. Though the phase 

change process augments the potential storage capacity of LHS systems, the pinch point phenomenon 

hinders the system’s ability to capitalize on this capacity. Despite this shortcoming, the LHS system 

required a smaller tank size than the SHS system to discharge the same quantity of energy. The current 

chapter evaluates the cost of a single-PCM LHS system, 3-PCM LHS system, and the SHS system to 

understand the economic gain that one may have over the other. It is only a preliminary estimate used to 

compare the material costs of the different systems and does not include the balance of system costs that 

would represent a more accurate assessment. The economic assessment is also based on the metric of 

energy output, which does not directly correspond to electricity production due to the variation in the 

quality of energy recovered from the storage systems.  

Studies that have compared system costs have primarily focused on comparisons between LHS 

packed bed systems or SHS packed bed systems with the conventional molten salt 2-tank design. Mathur 

et al. [86] compared the cost of a 2-tank system and a cascaded PCM system with equivalent thermal 

energy storage capacity. Balance of system costs were included, however the study did not account for the 

HTF that fills the pore space of the packed bed system. The study demonstrated that the LHS system costs 

are 40% lower per kWhth than the conventional 2-tank design. Nandi et al. [87] compared the system cost 

and Levelized Electricity Cost (LEC) of a 2-tank system, and SHS thermocline, each providing 6 hours of 

storage for a 50 MW parabolic trough CSP plant. The 2-tank system capital storage cost was 78% higher 

and the LEC cost was 59% higher than the SHS packed bed system. Nithyanandam and Pitchumani [68] 
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conducted a plant-level study for a Rankine cycle and Supercritical s-CO2 cycle and evaluated the LEC 

when a 2-tank system and LHS packed bed system was integrated. Various design conditions were 

investigated and the study compared the costs of the LHS systems with lowest LEC. For the 200 MW 

Rankine cycle plant, the storage capital cost of the 2-tank system was $204.6 US Million and the lowest 

capital storage cost of the PCM packed bed storage was $74.6 US Million, a 63.5% decrease in capital 

cost. In Pacheco et al. [36], the costs of a 688 MWh two-tank and SHS packed bed storage system were 

compared. The study found that the packed bed system was approximately 66% of the cost of the 2-tank 

molten salt system. These previous studies illustrate that packed bed systems do cost less than the 

conventional 2-tank design. The current study investigates the relative storage system cost for each of the 

SHS, LHS, and cascaded LHS packed bed systems using recent pricing and compares this to the 2-tank 

design.  

4.2 Pricing Method 

A cost estimate of each system was calculated by adopting historical cost data and applying the 

Chemical Engineering Plant Cost Index (CEPCI) [88] to account for inflation [52]. The tanks are 

constructed of stainless steel 347 due to the system’s high operating temperature [32]. Estimates for 

installed costs of field erected vertical storage tanks can be calculated with the following correlation that 

is valid for 21,000 < Vtank < 11,000,000 gallons and accounts for economies of scale [89] 

𝐶 = 1.218𝐹𝑀exp [11.662 − 0.6104(𝑙𝑛𝑉𝑡) + 0.04536(𝑙𝑛𝑉𝑡)
2]                            (68) 

The correlation is defined for carbon steel, therefore the material cost factor, FM, for the price of stainless 

steel 347 relative to carbon steel is applied. FM is equal to 3.0. The installed price is then calculated by 

multiplying the purchase price of Equation 68 by the installed cost multiplier for field erected stainless 

steel storage tanks, which is equal to 1.2 [89]. 

Installed Cost = (purchase price)(multiplier)                                       (69) 

Equation 68 is based on cost data from 2002. For an updated cost estimate, the annual 2013 CEPCI is 

applied: 
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𝐶2013 = 𝐶2002
𝐶𝐸𝑃𝐶𝐼2013

𝐶𝐸𝑃𝐶𝐼2002
                                                         (70) 

where the annual average CEPCI for 2002 is 395.6 and for 2013 is 567.3 [88]. 

 Calcium silicate block insulation prices were derived from [90]. The insulation unit cost was 

taken as a constant value of $235/m
2
 for a thickness of 500 mm. The study in [90] did not specify the year 

in which these prices were derived, therefore compensation for inflation is neglected.  

 The tank foundation was similarly priced from data in [90]. The foundation diameter was 

assumed equivalent to the tank diameter. Three foundation layers were implemented. The bottom most 

layer is a 610 mm thick concrete slab in which 73 kg of steel reinforcement per cubic meter of slab is 

used. The concrete slab is $85/m
3
 and the steel reinforcement is $0.80/kg. The second layer is a 230 mm 

thick insulating concrete slab that is estimated as $100/m
3
. The top-most layer is then a 300 mm thick 

foam glass insulation that costs $356/m
3
. 

 Sodium chloride bulk prices were acquired from the 2014 USGS mineral commodity summary 

[91]. The 2013 price for vacuum and open pan salt is $175/metric ton, which was the highest purity grade 

salt that was provided in the summary. The nitrate eutectic that served as the HTF was priced as $1.25/kg 

[86]. The price of potassium sulfate was provided through personal communication from Great Salt Lake 

Mines, a U.S. company that mines and distributes sulfate of potash, which is a form of the salt used in the 

fertilizer industry. The value used in the analysis is $940/metric ton. The price of 98% purity magnesium 

chloride was based on a quote from a company specializing in the sale of inorganic chemicals. It is 

typically sold in aqueous form due to its hygroscopic nature, therefore the price in anhydrous form of 

$1300/ton is relatively high compared to its hydrated counterpart. The price of potassium chloride was 

based on an internet survey of commodity prices for the salt. The assumed value is $500/metric ton. 

Encapsulation cost was taken as $0.25/kg, which is an estimate provided in [86]. This value is only used 

as a starting point for the analysis. The price of 8x12 silica sand was provided by Premier Silica as 

$195/short ton and the price of 3/8” quartzite  was provided by Ulm Quartzite Quarry as $17.50/short ton. 

Using the mass fraction of 30% silica sand and 70% quartzite, the total price for the SHS filler material is 
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$78/metric ton. After conducting a survey of prices found in the literature and previously requested quotes 

from salt distributors, the prices of sodium chloride, potassium sulfate, magnesium chloride, and the 

nitrate eutectic were chosen due to the fact that they were at the high range of the price spectrum. These 

values are only for a preliminary cost assessment and can change significantly based on location of the 

CSP facility, annual market fluctuations, and purity of the material. Freight charges are neglected in the 

analysis since they are unknown, and salt melting costs for both the HTF and PCM are not estimated, 

however they would increase system costs to differing degrees for each system. Table 28 summarizes the 

cost of the storage media. Since the prices can vary significantly between distributors and location, the 

relative storage system costs are provided as a range of values. For example, several references cite 

different values for the cost of the eutectic nitrate solar salt used as the HTF. The capital cost estimate in 

Kelly [32] cites the price of the solar salt, including handling, as $1.10/kg, whereas Mathur et al. [86] 

provides a cost of $1.25/kg, and Kenisarin [79] identifies the price as $0.50/kg. Therefore a low, middle, 

and high estimate in capital storage cost is included, and the range is based on a 20% increase and 

decrease in the quoted prices of the HTF and filler materials provided in Table 28. Tank costs are not 

varied. The head space in each tank that may be needed to accommodate storage material/HTF expansion 

was ignored, therefore the tanks were solely sized according the packed bed volume requirement. Balance 

of system costs, such as manifold piping, heat tracing elements, and pumps, were additionally neglected. 

Table 28. Storage material and HTF cost 

Storage Media Specific cost 

($/kg) 

High estimate 

($/kg) 

Low estimate 

($/kg) 

Quartzite/8x12 silica sand mixture $0.078/kg $0.094/kg $0.062/kg 

NaCl - K2SO4 eutectic $0.695/kg $0.834/kg $0.556/kg 

MgCl2 – NaCl eutectic $0.794/kg $0.953/kg $0.635/kg 

KCl – MgCl2 – NaCl eutectic  $0.916/kg $1.10/kg $0.733/kg 

solar salt HTF $1.25/kg $1.50/kg $1.00/kg 

Encapsulation  $0.25/kg $0.30/kg $0.20/kg 
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4.3 Cost Comparison of SHS vs. LHS Packed Bed Thermocline Systems 

Table 29 itemizes the cost of each system, the sizes of which are based on the requirements 

needed to establish the same energy output, and Figure 58 plots each system’s cost breakdown using the 

middle filler and HTF price estimate. The low and high total estimates are also provided in Figure 58 as 

error bars. As is illustrated, both LHS systems exceed the cost of the SHS system, which is largely due to 

the cost of the phase change material and encapsulation. The SHS system benefits from not requiring 

encapsulation, from having a low porosity which reduces the HTF cost, and from the very low storage 

material cost. If encapsulation was disregarded, the LHS systems would continue to remain above the 

SHS cost. Even with the high cost of the middle and bottom PCM, the cascaded system does benefit from 

lower material requirements when compared to the single PCM system. 

Table 29. Itemized cost of each packed bed system. 

Item  SHS system 1-PCM LHS system 3-PCM LHS system 

Tank volume, m
3
 722 654.5 536.5 

Tank cost, $k $356.71 $340.02 $309.40 

Insulation cost, $k $84.78 $78.79 $68.32 

Foundation cost, $k $19.15 $19.15 $19.15 

Total cost (Low estimate), $k $909.61 $1526.14 $1356.26 

Total cost (Mid estimate), $k $931.57 $1798.18 $1596.11 

Total cost (High estimate), $k $953.53 $2070.23 $1799.25 

 

 
Figure 57. Capital cost breakdown of the SHS, 1-PCM, and 3-PCM LHS packed bed systems. The cost of 

each item is provided for the middle filler and HTF estimate. The high and low total cost are provided. 
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To determine if the cost of the LHS systems would benefit in lower porosity and particle 

diameter, two additional scenarios were analyzed. These include: 

1.) The same porosity and particle diameter of the SHS system of Pacheco et al. [36] was 

employed. The tank size was 528 m
3
 when a porosity of 0.22 and particle diameter of 19.05 

mm was employed.  

2.) A significantly smaller particle diameter of 10 mm and a porosity of 30% was employed for 

the 3-PCM cascaded system. The second scenario was demonstrated  in [86] to produce a 

high utilization ratio for a 3-PCM cascade. The resulting tank volume is 515 m
3
. This 

produced a slightly higher output of 105.1 MWh.  

The resulting costs using the middle storage media price estimates are provided in Table 30. The 

total cost of this system is slightly less than the 3-PCM cascade with higher porosity and particle diameter 

due to the large reduction in HTF cost, however the PCM and encapsulation costs keep the price largely 

elevated above the SHS system.  

Table 30. Total cost of the 3-PCM cascaded system with low particle diameter and porosity. 

Item  3-PCM LHS system with low Dp 

and ε 

Particle diameter,  mm 19.05 10.0 

Porosity 0.22 0.30 

Tank volume, m
3
 528 515 

Tank cost, $k $307.11 $303.6 

Insulation cost, $k $67.56 $66.41 

Foundation cost, $k $19.15 $19.15 

HTF cost, $k $264.09 $351.25 

Storage media cost, $k $695.40 $608.71 

Encapsulation cost, $k $216.73 $189.71 

Total cost (mid estimate), $k $1570.04 $1538.82 

 

4.4 Cost Comparison of Packed Bed Thermocline Systems with the 2-Tank Design 

The state-of-the-art system requires two tanks and only utilizes the HTF to store energy. Heat 

exchangers may also be required if the HTF differs from the molten salt storage media. With the high cost 

of the HTF and two tank requirement, it is expected that the cost of this design would exceed that of the 
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single tank systems. To test this hypothesis, a 2-tank system was sized for the same energy requirement of 

104.8 MWh based on a temperature differential of 277°C (565°C -  288°C) and same average HTF density 

and specific heat capacity that was employed in the packed bed studies. To simplify the analysis, any 

inactive volume needed for HTF expansion or vapor pressure head was neglected. The same tank 

diameter of 10.593 m, which was used in all other analyses, was adopted. Based on these assumptions, 

each tank would require a volume of 493.9 m
3
. This is very similar to the size of the Solar Two storage 

tanks, which had a volume of 544.73 m
3 
for an energy output of 110 MWh for the same temperature range 

[92], though sizing the system with the above assumptions deflates the volume requirement. Table 31 

adds the the 2-tank cost to Table 29 so the values may be compared. The tank, insulation, and foundation 

costs provided in the table are for a single tank and the total cost doubles these values. The HTF cost is 

based on the volume needed for one tank. The values demonstrate that the elevated costs of the LHS 

systems are still lower than the 2-tank design, however there is significantly greater cost advantage with 

the SHS packed bed system. The exergy recovered from the systems varies, therefore the specific price 

($/kWhth) was not included as this would be a misleading cost metric [68].   

 

Table 31. Cost comparison for all systems. The costs of the foundation, tank, and insulation for the 2-tank 

system are for a single tank only. The total cost includes the both tanks and the HTF. 

Item  SHS system 1-PCM LHS 

system 

3-PCM LHS 

system 

2-Tank system 

Tank volume, m
3
 722 654.5 536.5 494 (single tank) 

Tank cost, $k $356.71 $340.02 $309.40 $297.78 

Insulation cost, $k $84.78 $78.79 $68.32 $64.54 

Foundation cost, $k $19.15 $19.15 $19.15 $19.15 

Total cost (low estimate), $k $909.61 $1526.14 $1356.26 $1661.15 

Total cost (mid estimate), $k $931.57 $1798.18 $1596.11 $1885.71 

Total cost (high estimate), $k $953.53 $2070.23 $1799.25 $2110.26 
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CHAPTER 5: DISCUSSION, CONCLUSIONS, AND RECOMMENDATIONS 

 

Numerous research efforts are currently dedicated to developing low cost utility-scale CSP 

thermal energy storage systems that employ the single tank packed bed concept. The motivation for this 

work was to conclude if these systems are indeed economically favorable and show promise for future 

endeavors. Historical studies in phase change storage have evaluated these systems under simplified 

conditions. With advancements in CSP technology and a transition to high temperature systems, newer 

TES studies must adopt conditions that are more likely to be encountered. Cycling a system to steady 

state, and employing charging and discharging cut-off temperatures invokes results that may differ from 

the simplified assumptions previously adopted. For instance, Adebiyi et al. [70] showed that the latent 

heat must be highest at the bottom of a 3-PCM cascade for optimal second-law efficiency. The current 

study demonstrates however, that the charging and discharging threshold temperatures strongly affect the 

optimal configuration for enhanced system output, and rather than a thermodynamic gain in efficiency, 

there is a penalty when multiple PCMs are used. Many investigations also evaluate LHS packed bed 

systems with a hypothetical PCM in order to parametrically study the factors that influence performance. 

This study expands the scope of performance studies by comparing a hypothetical case to a realistic 

system in order to understand the differences and drawbacks that may be encountered.  

The performance study examines the heat transfer mechanisms that prevent full utilization of the 

storage capacity of  LHS systems, and discusses problems and tradeoffs that are faced in PCM selection. 

For single-PCM systems, the following conclusions were made: 

1.) The charging process benefits from the use of a PCM that melts below the charging threshold 

value. The large temperature difference between the melting point and inlet HTF temperature 

induces a high rate of heat transfer that facilitates a faster travel rate of the pinch point 
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interface. Thus a large fraction of the bed reaches the hot operating temperature, and the 

system can discharge HTF at the high exergy state for an extended period of time before the 

thermocline exits the bed. However, since the melting point falls below the discharging cut-

off temperature, they cannot recover all of the latent heat. 

2.) The discharging process benefits from a PCM with high melting temperature that lies above 

the discharging threshold temperature. Since the systems discharge HTF above the threshold 

value, they are able to extract a large fraction of the latent heat. The drawback is the reduced 

quality of energy released from the system since they do not store much energy at the hot 

operating temperature. 

Cascaded systems take advantage of the benefits provided by employing a low and a high melting 

PCM. The low melting PCM serves as a buffer, extending the charging time such that the system can 

store and recover energy at the high exergy state. The high melting PCM auments the amount of energy 

that is released from the system. This added energy is liberated at the melting temperature of the top 

PCM, which is lower in exergy yet still functional in producing electricity. The degree to which cascaded 

systems benefit from multiple PCMs is highly dependent on the volume fraction of each PCM and the 

distribution of latent heat. Phase change temperature also affects useful energy output, however this effect 

was not studied for cascaded systems. The conclusions place emphasis on the need to evaluate the quality 

of energy rather than quantity of energy that is discharged from packed bed systems. The 2-PCM and 3-

PCM systems consistently produced more energy than the single-PCM systems, however some cascaded 

structures discharged HTF at the high exergy state for less time. A plant level study is needed to 

understand how the distribution of energy that is discharged from the cascade systems affects annual 

electricity production. 

The economic study demonstrates that there are advantages in single tank packed bed systems 

over the conventional 2-tank systems. There are further studies that must be pursued to firmly establish 

the economic benefit. These include: 
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1.) The preliminary economic assessment neglected heat exchanger, piping, pump, O&M, and 

salt melting costs, as well as balance of system costs that are inherently necessary for a true 

capital cost study. These should be included in future investigations. 

2.) A plant level study that compares the electrical output and levelized cost of energy from each 

of the systems should be conducted.  

3.) An exploratory cost study on potential sensible heat and phase change materials would be 

beneficial. This should include recycled materials such as that found in Py et al. [93] which 

presents a very low cost material that can be used for high temperature applications. 

4.) Encapsulation methods and costs for high temperature packed bed LHS systems are still 

needed. There are many technical hurdles in developing encapsulation techniques that are 

robust enough to withstand thousands of thermal cycles. Until this has been established, SHS 

packed bed systems are likely to be technically and economically superior in the near future.  
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Appendix A. Nomenclature 

Bi  

Cp  

Cp,eff  

d  

Dp  

G  

h  

H  

hp   

k  

L   

Nu  

Pr  

Re  

vt  

ΔP  

T  

TL  

Tm  

TS  

U  

ρ  

μ 

ε 

Biot number, h(r/3)/ks 

Specific heat capacity (J/kg-K) 

Effective/apparent specific heat capacity (J/kg-K) 

Tank diameter (m) 

Particle diameter (m) 

Air mass flux (kg/m
2
-s) 

Convective heat transfer coefficient (W/m
2
-K) 

Bed height (m) 

Horsepower 

Thermal conductivity (W/-K) 

Latent heat (J/kg) 

Nusselt number, hDp/k 

Prandtl number, cp,HTF μHTF/kHTF 

Particle Reynolds number (GDp/ μHTF) 

Propagation velocity of thermocline zone 

Pressure drop (Pa) 

Temperature 

Liquidus temperature 

Phase change temperature 

Solidus temperature 

Superficial bed velocity (m/s) 

Density (kg/m
3
) 

Dynamic viscosity (kg/m-s) 

Average bed porosity 

Subscripts 

 

c  

eff  

h  

HTF  

s  

 

 

Cold 

Effective 

Hot 

Heat transfer fluid 

Solid phase 
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Appendix B. Supplemental Information on the SHS Packed Bed Prototype System 

B.1 Flow Conditioners 

The only design that showed favorable results for the flow from the top of the system was that of 

a commercially available CRV vane produced by Cheng Fluid Systems. A small prototype was built and 

tested by inserting the device before the elbow of the small-scale system. Figure B.2 illustrates the 

difference in velocity across the bed diameter when the vane is included versus when it is removed. The 

velocity exhibits a parabolic shape that is symmetric about the central axis when the vane is implemented. 

This is opposed to the situation when the conditioner is removed, wherein the velocity peaks along one 

wall of the bed, dips at the center of the bed, and rises slightly along the opposing wall. Due to the high 

cost of purchasing a large stainless steel CRV vane for the pilot-scale system, the flow conditioner was 

not purchased and the system was operated without any device.  

 

                                          
             a.         b. 

                                            
    c.      d. 

Figure B.1. Flow conditioners that were tested to examine their ability to uniformly distribute air flow. 

a)  a tube bundle made with ClearFlex PVC tubing was placed in the elbow, b) a Deflect-o adjustable 

4 inch diffuser was placed in the entrance plenum, c) stainless steel diffuser plate made with 

countersunk holes and placed at bottom of the lower entrance plenum, and d) handmade CRV vane 

made with aluminum sheeting. 
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B.2 Prototype System Components and Construction 

The following images provide details on the construction of USF’s SHS prototype system. 

 

Figure B.3. Two 24” flanged tank sections. 

 

 

Figure B.2. Measured velocity profile across tank diameter with and without CRV vane. 
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Figure B.4. Perforated packed bed plate topped with a layer of insulation and stainless steel mesh. 

 

 

 

Figure B.5. Final system setup prior to insulating. 

 



www.manaraa.com

121 

 

 

Figure B.6. Omega k-type thermocouples (type XCIB) used in USF’s packed bed system. 

 

  

Figure B.7. Heater control system (left) and thermocouple board (right). 
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Appendix C. Copyright Permissions 

This section includes the permissions  obtained to use the copyrighted materials. 

 Permission to use Figure 1 in reference [3] 
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 Permission to use Figure 3 in reference [7] 
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 Permission to re-use previously published article [94] in Chapter 2. 
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 Permission to use Figure 37 in reference [35]  
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Appendix D. MATLAB Code 

D.1 Dispersion-Concentric Model 

%***********************Packed Bed Storage************************ 

%Written by Jamie Trahan, September 1, 2014 

%Updated March 6, 2015 

%This code evaluates a packed bed system undergoing multiple charging/discharging 

%cycles.  

%Intended for single or cascaded storage. 

%It is based on the dispersion concentric model. 

%The implicit method is used to solve the governing equations. 

%There are 2 methods of calculating effective Cp: 

%1) Logistic function method 

%2) Rectangular Cp method 

%First and second law efficiency calculations are included. 

 %***************************************************************** 

  

%Input Temperature (Celsius) 

Tai = 565; %Inlet temperature of HTF 

Tbi = 288; %Inlet temperature to bed during discharging. 

TmaxCh = Tbi+(0.39*(Tai-Tbi)); %Maximum outlet temperature during charging. 

TminDch = Tbi+(0.74*(Tai-Tbi)); %Minimum outlet temperature of HTF during discharging. 

Tbini = 288; %Initial bed temperature  

Tinf = 23; %Ambient temperature 

Tave = (Tai+Tbi)/2; %Average temperature for air properties 

TaveIn = (Tai+Tinf)/2; %Average temperature of HTF for calculating energy in 

  

%Select the HTF to determine correct thermophysical properties. 

%for HTFprops(x,Tave) 

%if x = 1, HTF = Air 

%if x = 2, HTF = solar salt 

  

%HTF properties (All in SI units)(based on degrees C) 

[rhoHTF,muHTF,cpHTF,kHTF] = HTFprops(2,Tave); 

  

% Phase change material properties 

  

thetaM1 = 0.75; %dimensionless melting temperature 

thetaM2 = 0.5; 

thetaM3 = 0.25; 

Tmelt1 = 515; %Tbi+(thetaM1*(Tai-Tbi)); (degC) 

Tmelt2 = Tbi+(thetaM2*(Tai-Tbi)); %second PCM 

Tmelt3 = Tbi+(thetaM3*(Tai-Tbi)); %melting temperature of 3rd PCM 

Tsolidify1 = Tmelt1; 

Tsolidify2 = Tmelt2;  

Tsolidify3 = Tmelt3; 

Tsolidus1 = Tmelt1-1; % Lower melting temperature range (degC) 

Tsolidus2 = Tmelt2-1; 

Tsolidus3 = Tmelt3-1; 
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Tliquidus1 = Tmelt1+1; %Upper melting temperature range 

Tliquidus2 = Tmelt2+1; 

Tliquidus3 = Tmelt3+1; 

TsolidusD1 = Tsolidify1-1; %Lower solidification temperature range (degC) 

TsolidusD2 = Tsolidify2-1; 

TsolidusD3 = Tsolidify3-1; 

TliquidusD1 = Tsolidify1+1; %Upper solidificaiton temperature range (degC) 

TliquidusD2 = Tsolidify2+1; 

TliquidusD3 = Tsolidify3+1; 

  

cpsolid = 830; % specific heat capacity of solid PCM (J/kg-K) 

cpliquid = 830; % specific heat capacity of liquid PCM (J/kg-K) 

cpave = (cpsolid+cpliquid)/2; %Average specific heat capacity (J/kg-K) 

 

%InvSte1 = Lhm1/(cpave*(Tai-Tbi)) 

%InvSte2 = Lhm2/(cpave*(Tai-Tbi)) 

%InvSte3 = Lhm3/(cpave*(Tai-Tbi)) 

  

Lhm1 = 187000;  %InvSte3*(cpave*(Tai-Tbi)) ; latent heat of melting (J/kg) 

Lhm2 = 187000; 

Lhm3 = 187000; 

Lhs1 = 187000;  %latent heat of solidification (J/kg) 

Lhs2 = 187000; 

Lhs3 = 187000; 

  

% InvSte1 = Lhm1/(cpave*(Tai-Tbi)) 

% InvSte2 = Lhm2/(cpave*(Tai-Tbi)) 

% InvSte3 = Lhm3/(cpave*(Tai-Tbi)) 

  

rholiquid = 2500; % density of liquid PCM (kg/m3)   

rhosolid = 2500;  % density of solid PCM (kg/m3) 

rhoave = (rhosolid+rholiquid)/2; 

ksolid = 5.0; %thermal conductivity of solid pcm (W/mK) 

kliquid = 5.0; %conductivity of liquid (W/mK)  

kave = (ksolid+kliquid)/2; %average thermal conductivity 

kmelt = 1.0; %enhancement factor during melting 

ksolidify = 1.0; % enhancement factor during solidification 

alphalMelt = kliquid*kmelt/(rholiquid*cpliquid); %thermal diffusivity of liquid phase during melting 

alphasMelt = ksolid*kmelt/(rhosolid*cpsolid); %thermal diffusivity of solid phase during melting 

alphalSolidify = kliquid*ksolidify/(rholiquid*cpliquid); %thermal diffusivity of liquid phase during 

melting 

alphasSolidify = ksolid*ksolidify/(rhosolid*cpsolid); %thermal diffusivity of solid phase during melting 

kAlumina = 5.5+(34.5*exp(-0.0033*((Tave+273)-273))); %conductivity of Alumina coating. (W/m-K) 

cpAlumina = 1000*(1.0446+((1.742e-4)*(Tave+273))-((2.796e4)*(Tave+273)^-2)); %specific heat of 

alumina. (J/kg-K) 

rhoAlumina = 3700; %density of alumina (kg/m^3) 

zeta = 9; %cp parameter 

 

%Bed properties 

ep = 0.22; %bed porosity based on outer capsule diameter volume 
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Di = 0.01905; %(0.02653 for NaNO3/0.01905 for SHS) particle diameter (m) 

Wp = 0.00045; % Particle wall thickness (m) 

Dp = Di+(2*Wp); % (Dp) Inner diameter of particle 

Ro = Dp/2; %outer particle radius (m) 

Ri = Di/2; %Inner radius of pellet (m) 

Ap = 4*pi*(Ro^2); %Outer surface area of sphere (m2) 

Vp = (4/3)*pi*(Ro^3); %volume of single sphere of PCM(m3); 

Vpi = (4/3)*pi*(Ri^3); 

Vcoat = Vp-Vpi; %Volume of coating of single sphere  

Vratio = Vpi/Vp; %ratio of PCM volume to total sphere volume 

  

%Bed dimensions 

HrsStore = 3; %Number of hours of storage 

QthermalWh = 106.5e6; %Qthermal/3600; %Required storage system energy (Wh) 

Qthermal = QthermalWh*3600; %(PowerE*HrsStore*3600)/EffPB; %Required storage system energy 

(joules) 

mdotD = Qthermal/(cpHTF*(Tai-Tbi)*(HrsStore*3600)); %Design mass flow rate (kg/s) 

PCMmassD = 3*(Qthermal/((cpsolid*(Tsolidus1+Tsolidus2+Tsolidus3-

(3*Tbini)))+Lhm1+Lhm2+Lhm3+(cpliquid*((3*Tai)-Tliquidus1-Tliquidus2-

Tliquidus3))+(cpave*(Tliquidus1+Tliquidus2+Tliquidus3-Tsolidus1-Tsolidus2-Tsolidus3)))); %design 

mass of PCM 

PCMvolumeD = PCMmassD/rholiquid; %Design volume of PCM 

VtankD = 650; %PCMvolumeD/(1-ep); %Design tank volume. 

LDratio = 0.5; %Height to diameter ratio of tank. 

DbedD = 10.5925; %(((4*VtankD)/(LDratio*pi))^(1/3)); %Design bed diameter 

AbedD = pi()*(DbedD^2)/4; 

HbedD = VtankD/AbedD; %LDratio*DbedD; %Design bed height 

Dbed = DbedD; %diameter of bed (meters)  

Hbed = HbedD; %height of bed (m) 

Abed = (pi*(Dbed^2))/4; %area of bed (m2) 

Vtank = Abed*Hbed; %Tank volume (m^3) 

VtankG = Vtank*264.172; %Tank volume (gallons) 

SATank = Hbed*pi*Dbed; %Tank surface area (m^2) 

Rbed = Dbed/2; %Outer tank diameter, including insulation. 

Vbed = Vtank*(1-ep); %volume of  bed (m^3) 

Twall = 2.0*0.0254; %thickness of steel wal1; (m)(enter inches) 

Tinsul = 0.5; %thickness of insulation (m) (enter inches) 

MassPCM = rhosolid*Vbed; %Total PCM mass  

MassPCM1 = (1/3)*MassPCM; 

MassPCM2 = (1/3)*MassPCM; 

MassPCM3 = (1/3)*MassPCM; 

MassHTF = Vtank*ep*rhoHTF; %Total HTF mass 

%QbedMax = (MassPCM/3)*((cpsolid*(Tsolidus1+Tsolidus2+Tsolidus3-

(3*Tbini)))+Lhm1+Lhm2+Lhm3+(cpliquid*((3*Tai)-Tliquidus1-Tliquidus2-

Tliquidus3))+(cpave*(Tliquidus1+Tliquidus2+Tliquidus3-Tsolidus1-Tsolidus2-Tsolidus3))); 

QbedMax = (MassPCM*(cpsolid*(Tai-

Tbi)))+(MassPCM2*Lhm2)+(MassPCM1*Lhm1)+(MassPCM3*Lhm3); 

QlatentMax = (MassPCM1*Lhm1)+(MassPCM2*Lhm2)+(MassPCM3*Lhm3); 

 

%Spatial and time parameters for bed 
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Nx = 296; %Number of mesh points; Number of elements = Nx-1 

deltax = Hbed/(Nx-1) %mesh length (m)  

  

%Spatial parameters for single sphere 

Rx = 30; 

deltar = Ri/(Rx-1);  

  

ax = 98; % Top third of cascade ends at this grid point for charging mode 

bx = 196; %Second third of cascade ends at this grid point 

  

az = 98; % Defines grid point at bottom third of cascade during dischargin mode 

bz = 196; % Defines grid point at second third of cascade during discharging mode 

  

%Inlet flow conditions 

tchmin = 10*60; %charging time in minutes 

tdchmin = 10*60; %discharging time in minutes 

tch = tchmin*60; %charging time in seconds 

tdch = tdchmin*60; %discharging time in seconds 

numcycle = 20; %number of charging/discharging cycles 

  

% Bed Flow rate 

%Input volumetric flow rate in m3/hr 

mdotch = mdotD; % mass flow rate  

mdotdch = mdotD; %Discharging mass flow rate (kg/s) 

Vch = mdotch/(rhoHTF*Abed); %Charging superficial bed velocity (m/s) 

Vdch = mdotdch/(rhoHTF*Abed); %Discharging superficial bed velocity (m/s) 

Gch = mdotch/Abed; % charging HTF mass flux (kg/m2s) 

Gdch = mdotdch/Abed; % Discharging HTF mass flux (kg/m2s) 

  

Rech = rhoHTF*Vch*Dp/muHTF %muHTF; Particle Reynolds number during charging. 

Redch = rhoHTF*Vdch*Dp/muHTF %Particle Reynolds number during discharging. 

  

Pr = cpHTF*muHTF/kHTF;  %Prandtl number for HTF at Tave; 

  

%Pressure drop calculation 

Pdch =(Hbed*(Gch^2)/(1.191*(Dp)))*((1.75*(1-ep)/(ep^3))+(150*(1-ep)*muHTF/((ep^3)*Gch*Dp))) 

%pressure drop (Pa) 

Patm = 101325; %Atmospheric pressure in Pascals 

  

  

%Effective Thermal conductivity calculations 

phi = 1-ep; 

beta = (ksolid-2*kHTF)/(ksolid+(2*kHTF)); 

Kseff = kHTF*((1+(2*beta*phi)+(((2*(beta^3))-(0.1*beta))*(phi^2))+((phi^3)*0.05*exp(4.5*beta)))/(1-

(beta*phi))); 

diffu = Kseff/(ep*cpHTF*rhoHTF);  %thermal diffusivity of air 

 

  

%Heat transfer coefficient based on Wakao 

NuBch = (2+(1.1*(Pr^(1/3))*(Rech^0.6))); 
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hch = NuBch*kHTF/Dp 

Bich = (hch*Dp)/(2*ksolid); %Biot number as defined in Jeffreson to calc heff. 

heffch = hch/(1+0.2*Bich); %Effective heat transfer coefficient. 

 

NuBdch = (2+(1.1*(Pr^(1/3))*(Redch^0.6))); 

hdch = NuBdch*kHTF/Dp; 

Bidch = (hdch*Dp)/(2*ksolid); %Biot number as defined in Jeffreson to calc heff. 

heffdch = hdch/(1+0.2*Bidch); %Effective heat transfer coefficient. 

 

%Overall heat transfer coefficient for single sphere 

Rcoat = (Ri/Ro)*((Ro-Ri)/kAlumina); %Resistance due to coating (used in boundary condition) 

Rextch = (1/heffch)*((Ri/Ro)^2); %External resistance (charging mode) 

Rextdch = (1/heffdch)*((Ri/Ro)^2); %External resistance (discharging mode) 

hoverallch = 1/(Rextch+Rcoat); %Overall heat transfer coefficient for single sphere. 

hoveralldch = 1/(Rextdch+Rcoat); %Overall heat transfer coefficient for single sphere. 

  

%Overall heat transfer coefficient for bed 

hoverallVch = hoverallch*6*(1-ep)/Dp; 

hoverallVdch = hoveralldch*6*(1-ep)/Dp; 

  

%Heat loss calculations: 

%Inner Wall heat transfer coefficient from Beek 

hwall = (kHTF/Dp)*((0.203*(Rech^(1/3))*(Pr^(1/3)))+(0.22*(Rech^0.8)*(Pr^0.4))); 

kinsul = 0.06; %insulation thermal conductivity (W/mK) 

%http://www.mace.manchester.ac.uk/project/research/structures/strucfire/materialInFire/Steel/HotRolled

CarbonSteel/thermalProperties.htm 

%ksteel = 54-Tave*(0.0333); %Carbon steel thermal conductivity for 20C < Tsteel < 800C (W/mK)  

ksteel = 14.6+(Tave*1.27e-2); %thermal conductivity of stainless steel (W/m-K) 

%Stainless props from 

http://www.mace.manchester.ac.uk/project/research/structures/strucfire/materialInFire/Steel/StainlessStee

l/thermalProperties.htm 

term1 = (1/hwall); 

term2 = (Rbed/ksteel)*(log((Rbed+Twall)/Rbed)); 

term3 = (Rbed/kinsul)*(log((Rbed+Twall+Tinsul)/(Rbed+Twall))); 

Uloss = 1/(term1+term2+term3); %(W/m^2-K) 

 

 

 

%************************************************************************* 

%************************************************************************** 

  

%Time step conditions 

deltat = 1;  % (sec) 

Nt = tch/deltat; % Number of time steps during charging 

  

%Define number of columns to store data  

tz = 1; %Increment of minutes to store in excel. 

tcolumn = (1/deltat)*60*tz  %In order to store data every 1 min, this specifies the number of time steps in 

1 minute. 

numcolumnch = (tchmin/tz); %Number of columns in excel spreadsheet to store data every 1 min. 
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cyclestepch = tchmin/tz;  %Defines number of times to execute cycle to store 1 min of data. 

numcolumndch = (tdchmin/tz); %Number of columns in excel spreadsheet to store data every 1 min. 

cyclestepdch = tdchmin/tz;  %Defines number of times to execute cycle to store 1 min of data. 

  

  

%Temperature Calculations 

Ta = zeros(Nx,numcolumnch); 

Tb = zeros(Nx,numcolumnch); %volume weighted average temperature of sphere for each row m. 

TaD = zeros(Nx,numcolumnch); 

TbD = zeros(Nx,numcolumnch); 

TaStIni = zeros(Nx,1); 

TbStIni = zeros(Nx,1); 

  

TbAve = zeros(Rx,1); %stores average sphere temperature (charging mode) 

TbAveD = zeros(Rx,1); %stores average sphere temperature (discharging mode) 

Tbcenter = zeros(Nx,numcolumnch); %Stores center of sphere temperature (charging mode) 

Tbfirst = zeros(Nx,numcolumnch); %Stores surface of sphere temperature (charging mode) 

Tbhalf = zeros(Nx,numcolumnch); %Stores quarter of sphere temperature (charging mode) 

TbcenterD = zeros(Nx,numcolumnch); %Stores center of sphere temperature (discharging mode) 

TbfirstD = zeros(Nx,numcolumnch); %Stores surface of sphere temperature (discharging mode) 

TbhalfD = zeros(Nx,numcolumnch); %Stores quarter of sphere temperature (discharging mode) 

  

Ts = zeros (Rx,tcolumn); %Matrix to store each element within the sphere 

sphSt = zeros(Rx,Nx);  %Matrix to store the sphere of each height along bed. (charging mode) 

sphDSt = zeros(Rx,Nx); 

sphStIni= zeros(Rx,Nx); 

  

%A = sparse(Rx,Rx); %Creates a sparse coefficient matrix for implicit method  

A = zeros(Rx,Rx); %PCM Coefficient matrix (charging mode) 

b = zeros(Rx,1); %PCM Right hand side vector (charging mode) 

x = zeros(Rx,1); %PCM solution vector (charging mode) 

  

J = zeros(Nx,Nx-1); %HTF Coefficient Matrix (charging mode) 

c = zeros(Nx,1); %HTF right hand side vector (charging mode) 

TaSt = zeros(Nx,1); %HT solution matrix (charging mode) 

TbSt = zeros(Nx,1); %Stores PCM average sphere temperature (charging mode) 

Lf = zeros(Rx,Nx); %Stores liquid fraction of each control volume in capsules. 

LfD = zeros(Rx,Nx); 

qCh = zeros(Rx,Nx); %Stores energy stored for each control volume in capsules. 

qSCh = zeros(Rx,Nx); qLCh = zeros(Rx,Nx); 

 

B = zeros(Rx,Rx); %PCM Coefficient matrix (discharging mode) 

g = zeros(Rx,1); %PCM right hand side vector (discharging mode) 

z = zeros(Nx,1); %PCM solution matrix (discharging mode) 

K = zeros(Nx,Nx-1); %HTF Coefficient matrix (discharging mode) 

d = zeros(Nx,1); %HTF right hand side vector (discharging mode) 

TaDSt = zeros(Nx,1); %HTF solution matrix (discharging mode) 

TbDSt = zeros(Nx,1); %Stores PCM average sphere temperature (discharging mode) 

  

Chargetime = zeros(numcycle,1); Dischargetime = zeros(numcycle,1); 
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qChTotal = zeros(numcycle,1);   sChTotal = zeros(numcycle,1);    exChTotal = zeros(numcycle,1); 

qSChTotal = zeros(numcycle,1); qLChTotal = zeros(numcycle,1); 

EstoreHat = zeros(numcycle,1);  SstoreHat = zeros(numcycle,1);   ExstoreHat = zeros(numcycle,1); 

QInNetCh = zeros(cyclestepch,numcycle); EinNetch = zeros(numcycle,1); 

 

QlossCh = zeros(cyclestepch,numcycle); 

Exloss = zeros(Nx,1); ExEffCh = zeros(numcycle,1); 

NetExIn = zeros(cyclestepch,numcycle);  EsaltStore = zeros(numcycle,1); 

ExlossCh = zeros(cyclestepch,numcycle); ExHTFChNetIn = zeros(numcycle,1); 

EoutflowC = zeros(tchmin,numcycle); %Vector stores the energy removed from the bed during charging 

at each minute. 

EoutflowD = zeros(tdchmin,numcycle); %This vector stores the energy discharged from air at each 

minute. 

ExpcmLCh = zeros(Nx,1);  effectivenessCh = zeros(numcycle,1); 

Estorech = zeros(numcycle,1); ExSaltStore = zeros(numcycle,1);  

EstoreCh = zeros(numcycle,1); %Energy stored for given cycle     

EffCh = zeros(numcycle,1); %Efficiency for given cycle 

CapFact = zeros(numcycle,1); CapFactL = zeros(numcycle,1); CapFactS = zeros(numcycle,1); 

      

qDch = zeros(Rx,Nx); sDch =  zeros(Rx,Nx); exDch = zeros(Rx,Nx);  

qDchTotal = zeros(numcycle,1); exDchTotal = zeros(numcycle,1); 

qSDchTotal = zeros(numcycle,1); qLDchTotal = zeros(numcycle,1); 

QoutDch = zeros(cyclestepdch,1);  ExHTFDchNetOut = zeros(numcycle,1); SoutDch = 

zeros(cyclestepdch,1); 

QlossDch = zeros(cyclestepdch,numcycle);  NetExOut = zeros(cyclestepdch,numcycle); 

EoutDch = zeros(numcycle,1); 

EffDch = zeros(numcycle,1); EffOverall = zeros(numcycle,1); EffOverallT = zeros(numcycle,1); 

ExEffDch = zeros(numcycle,1); ExEffOverall = zeros(numcycle,1);  ExEffOverallT = zeros(numcycle,1); 

  

SensibleOut = zeros(numcycle,1); %Sensible energy extracted during discharging 

LatentOut = zeros(numcycle,1); %Latent energy extracted during discharging 

Utotal = zeros(numcycle,1); %Total Utilization factor 

Usensible = zeros(numcycle,1); %Sensible heat Utilization factor 

Ulatent = zeros(numcycle,1); %Latent heat Utilization factor  

LatentRatio = zeros(numcycle,1); %Ratio of latent discharged over max. 

LatentStore = zeros(numcycle,1); %Ratio of latent stored over max. 

LatentEff =  zeros(numcycle,1);    SensibleEff = zeros(numcycle,1); 

  

  

%Creating an excel spreadsheet for each cycle 

  

for i = 1:1:(numcycle*2) 

    xlssheetnames(i) = {['Sheet',int2str(i)]}; 

end 

  

for j = 1:1:numcycle %Creating a table to store the last temperature of each charging cycle. 

    xlrange(j) = {['B',int2str(j)]}; 

end 

  

for k = 1:1:numcycle %Creating a table to store the last temperature of each discharging cycle. 
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    xlrangedch(k) = {['C',int2str(k)]}; 

end 

  

  

%************************Start charging conditions: *********************** 

%************************************************************************** 

  

  

for m = 1:1:Nx %air Initial condition; note that t= 1 is before heating starts. 

    Ta(m,1) = Tbini;  

end 

TaStIni(:,1)=Tbini; 

  

%Solid Initial conditions; at time = 1, heating hasn't started. 

Ts(:,1) = Tbini; 

sphSt(:,:) = Tbini; 

sphStIni(:,:) = Tbini; 

TaSt(:,1) = Tbini; 

c(1) = Tbini; 

TbStIni(:,1) = Tbini; 

  

%Creating a table for HTF inlet temperature boundary condition for each 

%minute 

%Taia = xlsread('NaNO3inletSolidify151.xlsx','Sheet1','B1:B202'); 

  

  

%HTF Boundary conditions 

for j = 2:1:tcolumn  %HTF Boundary condition 

     Ta(1,j) = Tai; 

end  

  

FolMelt = alphalMelt*deltat/(deltar^2); %Fourier number for liquid phase during melting 

FosMelt = alphasMelt*deltat/(deltar^2); %Fourier number for solid phase during melting 

FolSolid = alphalSolidify*deltat/(deltar^2); %Fourier number for liquid phase during solidification 

FosSolid = alphasSolidify*deltat/(deltar^2); %Fourier number for solid phase during solidification 

Be = deltat/(rhoHTF*cpHTF*ep); %Fourier number for HTF 

currentdigits = digits; 

  

 %Coefficient matrix for Charging HTF Temperature 

for n = 2:1:Nx-1 

     J(n,n-1) = (-Be*Gch*cpHTF/deltax)-(diffu*deltat/(deltax^2)); 

     J(n,n) = 

1+(Gch*cpHTF*Be/deltax)+(hoverallVch*Be)+(Uloss*Dbed*pi*Be/Abed)+(2*diffu*deltat/(deltax^2)); 

     J(n,n+1) = -diffu*deltat/(deltax^2); 

 end 

 J(Nx,Nx-1) = (-Be*Gch*cpHTF/deltax)-(2*diffu*deltat/(deltax^2)); 

 J(Nx,Nx) = 

1+(Gch*cpHTF*Be/deltax)+(hoverallVch*Be)+(Uloss*Dbed*pi*Be/Abed)+(2*diffu*deltat/(deltax^2)); 

 J(1,1) = 1; 
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 %Coefficient matrix for Discharging HTF Temperature 

for n = 2:1:Nx-1 

     K(n,n-1) = (-Be*Gdch*cpHTF/deltax)-(diffu*deltat/(deltax^2)); 

     K(n,n) = 

1+(Gdch*cpHTF*Be/deltax)+(hoverallVdch*Be)+(Uloss*Dbed*pi*Be/Abed)+(2*diffu*deltat/(deltax^2)

); 

     K(n,n+1) = -diffu*deltat/(deltax^2); 

 end 

 K(Nx,Nx-1) = (-Be*Gdch*cpHTF/deltax)-(2*diffu*deltat/(deltax^2)); 

 K(Nx,Nx) = 

1+(Gdch*cpHTF*Be/deltax)+(hoverallVdch*Be)+(Uloss*Dbed*pi*Be/Abed)+(2*diffu*deltat/(deltax^2)

); 

 K(1,1) = 1; 

  

  

count = 1;  %defining excel spreadsheet to place data 

  

for q = 1:1:numcycle 

 breakflag = false; %Flag to break from outer loop   

%Bed and air temperature calculations - Charging Mode 

    for t = 1:1:cyclestepch 

          

         %Charging HTF equation constants 

         

         for i = 1:1:(tcolumn)  %Calculating tz minutes of charging."i" is each time step 

             

             if TaSt(Nx,1) >= TmaxCh 

              breakflag = true;   

              break  

             end 

          

             c(1) = Tai; 

             for m = 2:1:Nx 

                 c(m,1) = TaSt(m,1)+(hoverallVch*Be*sphSt(1,m))+(Tinf*(Uloss*Dbed*pi*Be/Abed)); 

             end 

              

             TaSt = J\c; 

              

             for m = 1:1:ax    %1:1:Nx/3 

                 for n = 2:1:Rx-1 

                    rx = Ri-((n-1)*deltar); 

                    if sphSt(n,m) > Tliquidus1  

                        A(n,n-1) = -(FolMelt+(FolMelt*deltar/rx)); 

                        A(n,n) = (2*FolMelt)+1; 

                        A(n,n+1) = (FolMelt*deltar/rx)-FolMelt; 

                    end 

                    if  (Tliquidus1 >= sphSt(n,m)) && (sphSt(n,m)>=Tsolidus1)  

                        %Cp = cpsolid+((cpliquid-cpsolid)*(1/(1+exp(-zeta*(sphSt(n,m)-

Tmelt)))))+((Lhm*zeta)/((exp(-zeta*(sphSt(n,m)-Tmelt)))+(exp(zeta*(sphSt(n,m)-Tmelt)))+2)); 

                        Cp = cpave+(Lhm1/(Tliquidus1-Tsolidus1)); 
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                        Fop1 = (kave*kmelt*deltat)/(rhoave*Cp*(deltar^2)); 

                        A(n,n-1) = -(Fop1+(Fop1*deltar/rx)); 

                        A(n,n) = (2*Fop1)+1; 

                        A(n,n+1) = (Fop1*deltar/rx)-Fop1; 

                         

                    end 

                     

                    if sphSt(n,m) < Tsolidus1    

                        A(n,n-1) = -(FosMelt+(FosMelt*deltar/rx)); 

                        A(n,n) = (2*FosMelt)+1; 

                        A(n,n+1) = (FosMelt*deltar/rx)-FosMelt; 

                    end 

                 end 

                %Surface of sphere boundary condition 

                A(1,1) = hoverallch+(ksolid*kmelt/deltar); 

                A(1,2) = -ksolid*kmelt/deltar; 

                 

                %Center of sphere boundary condition 

                if sphSt(Rx,m) > Tliquidus1 

                    A(Rx,Rx-1) = -6*FolMelt; 

                    A(Rx,Rx) = 1+(6*FolMelt); 

                end 

                if (Tliquidus1 >= sphSt(Rx,m)) && (sphSt(Rx,m)>=Tsolidus1)  

                    %Cp = cpsolid+((cpliquid-cpsolid)*(1/(1+exp(-zeta*(sphSt(Rx,m)-

Tmelt)))))+((Lhm*zeta)/((exp(-zeta*(sphSt(Rx,m)-Tmelt)))+(exp(zeta*(sphSt(Rx,m)-Tmelt)))+2)); 

                    Cp = cpave+(Lhm1/(Tliquidus1-Tsolidus1)); 

                    Fop1 = (kave*kmelt*deltat)/(rhoave*Cp*(deltar^2)); 

                    A(Rx,Rx-1) = -6*Fop1; 

                    A(Rx,Rx) = 1+(6*Fop1); 

                end   

                 

                if sphSt(Rx,m) < Tsolidus1   

                    A(Rx,Rx-1) = -6*FosMelt; 

                    A(Rx,Rx) = 1+(6*FosMelt); 

                end      

                %Calculate new temperature 

                 b(2:Rx) = sphSt(2:Rx,m); 

                 b(1) = hoverallch*TaSt(m,1); 

                                   

                 x = A\b; 

                  

                 sphSt(:,m) = x(:,1); 

             end  

              

             for m = (ax+1):1:bx %((Nx/3)+1):1:(2*Nx/3) 

                 for n = 2:1:Rx-1 

                    rx = Ri-((n-1)*deltar); 

                    if sphSt(n,m) > Tliquidus2  

                        A(n,n-1) = -(FolMelt+(FolMelt*deltar/rx)); 

                        A(n,n) = (2*FolMelt)+1; 
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                        A(n,n+1) = (FolMelt*deltar/rx)-FolMelt; 

                    end 

                    if  (Tliquidus2 >= sphSt(n,m)) && (sphSt(n,m)>=Tsolidus2)  

                        %Cp = cpsolid+((cpliquid-cpsolid)*(1/(1+exp(-zeta*(sphSt(n,m)-

Tmelt)))))+((Lhm*zeta)/((exp(-zeta*(sphSt(n,m)-Tmelt)))+(exp(zeta*(sphSt(n,m)-Tmelt)))+2)); 

                        Cp = cpave+(Lhm2/(Tliquidus2-Tsolidus2)); 

                        Fop1 = (kave*kmelt*deltat)/(rhoave*Cp*(deltar^2)); 

                        A(n,n-1) = -(Fop1+(Fop1*deltar/rx)); 

                        A(n,n) = (2*Fop1)+1; 

                        A(n,n+1) = (Fop1*deltar/rx)-Fop1; 

                         

                    end 

                     

                    if sphSt(n,m) < Tsolidus2   

                        A(n,n-1) = -(FosMelt+(FosMelt*deltar/rx)); 

                        A(n,n) = (2*FosMelt)+1; 

                        A(n,n+1) = (FosMelt*deltar/rx)-FosMelt; 

                    end 

                 end 

                %Surface of sphere boundary condition 

                A(1,1) = hoverallch+(ksolid*kmelt/deltar); 

                A(1,2) = -ksolid*kmelt/deltar; 

                 

                %Center of sphere boundary condition 

                if sphSt(Rx,m) > Tliquidus2  

                    A(Rx,Rx-1) = -6*FolMelt; 

                    A(Rx,Rx) = 1+(6*FolMelt); 

                end 

                if (Tliquidus2 >= sphSt(Rx,m)) && (sphSt(Rx,m)>=Tsolidus2)  

                    %Cp = cpsolid+((cpliquid-cpsolid)*(1/(1+exp(-zeta*(sphSt(Rx,m)-

Tmelt)))))+((Lhm*zeta)/((exp(-zeta*(sphSt(Rx,m)-Tmelt)))+(exp(zeta*(sphSt(Rx,m)-Tmelt)))+2)); 

                    Cp = cpave+(Lhm2/(Tliquidus2-Tsolidus2)); 

                    Fop1 = (kave*kmelt*deltat)/(rhoave*Cp*(deltar^2)); 

                    A(Rx,Rx-1) = -6*Fop1; 

                    A(Rx,Rx) = 1+(6*Fop1); 

                end   

                 

                if sphSt(Rx,m) < Tsolidus2 

                    A(Rx,Rx-1) = -6*FosMelt; 

                    A(Rx,Rx) = 1+(6*FosMelt); 

                end       

                 

                %Calculate new temperature 

                 b(2:Rx) = sphSt(2:Rx,m); 

                 b(1) = hoverallch*TaSt(m,1); 

                                   

                 x = A\b; 

                  

                 sphSt(:,m) = x(:,1); 

             end  
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             for m = (bx+1):1:Nx    %((2*Nx/3)+1):1:Nx 

                 for n = 2:1:Rx-1 

                    rx = Ri-((n-1)*deltar); 

                    if sphSt(n,m) > Tliquidus3 

                        A(n,n-1) = -(FolMelt+(FolMelt*deltar/rx)); 

                        A(n,n) = (2*FolMelt)+1; 

                        A(n,n+1) = (FolMelt*deltar/rx)-FolMelt; 

                    end 

                    if  (Tliquidus3 >= sphSt(n,m)) && (sphSt(n,m)>=Tsolidus3)  

                        %Cp = cpsolid+((cpliquid-cpsolid)*(1/(1+exp(-zeta*(sphSt(n,m)-

Tmelt)))))+((Lhm*zeta)/((exp(-zeta*(sphSt(n,m)-Tmelt)))+(exp(zeta*(sphSt(n,m)-Tmelt)))+2)); 

                        Cp = cpave+(Lhm3/(Tliquidus3-Tsolidus3)); 

                        Fop1 = (kave*kmelt*deltat)/(rhoave*Cp*(deltar^2)); 

                        A(n,n-1) = -(Fop1+(Fop1*deltar/rx)); 

                        A(n,n) = (2*Fop1)+1; 

                        A(n,n+1) = (Fop1*deltar/rx)-Fop1; 

                         

                    end 

                     

                    if sphSt(n,m) < Tsolidus3   

                        A(n,n-1) = -(FosMelt+(FosMelt*deltar/rx)); 

                        A(n,n) = (2*FosMelt)+1; 

                        A(n,n+1) = (FosMelt*deltar/rx)-FosMelt; 

                    end 

                 end 

                %Surface of sphere boundary condition 

                A(1,1) = hoverallch+(ksolid*kmelt/deltar); 

                A(1,2) = -ksolid*kmelt/deltar; 

                 

                %Center of sphere boundary condition 

                if sphSt(Rx,m) > Tliquidus3  

                    A(Rx,Rx-1) = -6*FolMelt; 

                    A(Rx,Rx) = 1+(6*FolMelt); 

                end 

                if (Tliquidus3 >= sphSt(Rx,m)) && (sphSt(Rx,m)>=Tsolidus3)  

                    %Cp = cpsolid+((cpliquid-cpsolid)*(1/(1+exp(-zeta*(sphSt(Rx,m)-

Tmelt)))))+((Lhm*zeta)/((exp(-zeta*(sphSt(Rx,m)-Tmelt)))+(exp(zeta*(sphSt(Rx,m)-Tmelt)))+2)); 

                    Cp = cpave+(Lhm3/(Tliquidus3-Tsolidus3)); 

                    Fop1 = (kave*kmelt*deltat)/(rhoave*Cp*(deltar^2)); 

                    A(Rx,Rx-1) = -6*Fop1; 

                    A(Rx,Rx) = 1+(6*Fop1); 

                end   

                 

                if sphSt(Rx,m) < Tsolidus3 

                    A(Rx,Rx-1) = -6*FosMelt; 

                    A(Rx,Rx) = 1+(6*FosMelt); 

                end                  

                 %Calculate new temperature 

                 b(2:Rx) = sphSt(2:Rx,m); 
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                 b(1) = hoverallch*TaSt(m,1); 

                                   

                 x = A\b; 

                  

                 sphSt(:,m) = x(:,1); 

             end  

              

              

         end 

          

         %Calculation of volume averaged solid temperature: 

         for m = 1:1:Nx 

            %Average sphere temperature at first control volume of sphere: 

            TbAve(1) = ((4/3)*pi*((Ri^3)-((Ri-(deltar/2))^3)))*sphSt(1,m); 

            for n = 2:1:Rx-1 

                rx1 = Ri-((n-1)*deltar); 

                v1 = ((4/3)*pi*((rx1+(deltar/2))^3)); 

                v2 = ((4/3)*pi*((rx1-(deltar/2))^3)); 

                TbAve(n) = (v1-v2)*sphSt(n,m); 

            end 

            %Average sphere temperature at center of sphere. 

            TbAve(Rx) = (4/3)*pi*((deltar/2)^3)*(sphSt(Rx,m)); 

                  

            TbSt(m,1) = sum(TbAve)/Vpi; 

         end 

          

         Tbfirst(:,t) = sphSt(2,:).'; 

         Tbcenter(:,t) = sphSt(Rx,:).'; 

         Tbhalf(:,t) = sphSt((Rx/2),:).'; 

         Ta(:,t) = TaSt(:,1); 

         Tb(:,t) = TbSt(:,1); 

           

         %Exporting the (tz)th minute into excel: 

         Taircharge(1,t) = t*tz; %Places the number of minutes of charging in the 1st row. 

         Tbedcharge(1,t) = t*tz; %Note that the 1st column is reserved for the initial time. 

         Tbedcenter(1,t) = t*tz; 

         Tbedfirst(1,t) = t*tz; 

         Tbedhalf(1,t) = t*tz; 

         for m = 2:Nx+1     %Places the last time step in the correct column of the excel table. 

             Taircharge(m,t) = Ta(m-1,t); 

             Tbedcharge(m,t) = Tb(m-1,t); 

             Tbedcenter(m,t) = Tbcenter(m-1,t); 

             Tbedfirst(m,t) = Tbfirst(m-1,t); 

             Tbedhalf(m,t) = Tbhalf(m-1,t); 

         end 

          

          

         %Calculating the net amount of energy into the bed at each 

         %minute: 

         QInNetCh(t,q) = mdotch*cpHTF*(Tai-TaSt(Nx,1))*60; 



www.manaraa.com

139 

 

         %EoutflowC(t) = Qoutch; 

          

         %Calculating total heat loss of out system at each minute: 

         QlossCh(t,q) = (Uloss*Dbed*pi*deltax*sum(Tinf-TaSt(:,1))*60); 

          

         %Calculating Net Exergy into system per minute: 

         NetExIn(t,q) = mdotch*cpHTF*((Tai+273.15)-(TaSt(Nx)+273.15)-

((Tinf+273.15)*log((Tai+273.15)/(TaSt(Nx)+273.15))))*60; 

          

       

     

         if breakflag == true 

             break 

         end 

    end 

     

    Chargetime(q) = t-1 %Charging time in minutes  

    

    %Calculating energy stored in tank: 

    for m = 1:1:Nx 

           if (m >=1) && (m <= ax) %(m >= 1) && (m <= (Nx/3)) 

               Tliquidus = Tliquidus1; 

               Tsolidus = Tsolidus1; 

               Lhm = Lhm1; 

               Tmelt = Tmelt1; 

           end 

           if (m > ax) && (m<= bx) %(m > (Nx/3)) && (m <= (2*Nx/3)) 

               Tliquidus = Tliquidus2; 

               Tsolidus = Tsolidus2; 

               Lhm = Lhm2; 

               Tmelt = Tmelt2; 

           end 

           if (m > bx) && (m <= Nx)   %(m > (2*Nx/3)) && (m <= Nx) 

               Tliquidus = Tliquidus3; 

               Tsolidus = Tsolidus3; 

               Lhm = Lhm3; 

               Tmelt = Tmelt3; 

           end 

            

        %Average energy stored at first control volume of sphere: 

            vo = (((4/3)*pi*((Ri^3)-((Ri-(deltar/2))^3)))*Abed*(1-ep)*deltax)/Vpi; 

            if sphSt(1,m) > Tliquidus 

                Lf(1,m) = 1; 

                qCh(1,m) = vo*rholiquid*((cpliquid*(sphSt(1,m)-Tliquidus))+Lhm+(cpsolid*(Tsolidus-

Tbini))+(cpave*(Tliquidus-Tsolidus))); 

                qSCh(1,m) = vo*rholiquid*((cpliquid*(sphSt(1,m)-Tliquidus))+(cpsolid*(Tsolidus-

Tbini))+(cpave*(Tliquidus-Tsolidus))); 

                qLCh(1,m) = vo*rholiquid*Lhm; 

            end  

            if (Tliquidus >= sphSt(1,m)) && (sphSt(1,m)>=Tsolidus) 
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                Lf(1,m) = (sphSt(1,m)-Tsolidus)/(Tliquidus-Tsolidus); 

                qCh(1,m) = vo*rholiquid*((Lf(1,m)*Lhm)+(cpsolid*(Tsolidus-Tbini))); 

                qSCh(1,m) = vo*rholiquid*(cpsolid*(Tsolidus-Tbini)); 

                qLCh(1,m) = vo*rholiquid*(Lf(1,m)*Lhm); 

            end 

            if sphSt(1,m)<Tsolidus 

                Lf(1,m) = 0; 

                qCh(1,m) = vo*rhosolid*cpsolid*(sphSt(1,m)-Tbini); 

                qSCh(1,m) = vo*rhosolid*cpsolid*(sphSt(1,m)-Tbini); 

                qLCh(1,m) = 0; 

            end 

            for n = 2:1:Rx-1 

                rx1 = Ri-((n-1)*deltar); 

                v1 = ((4/3)*pi*((rx1+(deltar/2))^3)); 

                v2 = ((4/3)*pi*((rx1-(deltar/2))^3)); 

                vi = ((v1-v2)*Abed*(1-ep)*deltax)/Vpi; 

                if sphSt(n,m) > Tliquidus 

                    Lf(n,m) = 1; 

                    qCh(n,m) = vi*rholiquid*((cpliquid*(sphSt(n,m)-Tliquidus))+Lhm+(cpsolid*(Tsolidus-

Tbini))+(cpave*(Tliquidus-Tsolidus))); 

                    qSCh(n,m) = vi*rholiquid*((cpliquid*(sphSt(n,m)-Tliquidus))+(cpsolid*(Tsolidus-

Tbini))+(cpave*(Tliquidus-Tsolidus))); 

                    qLCh(n,m) = vi*rholiquid*Lhm; 

                end 

                if (Tliquidus >= sphSt(n,m)) && (sphSt(n,m)>=Tsolidus) 

                    Lf(n,m) = (sphSt(n,m)-Tsolidus)/(Tliquidus-Tsolidus); 

                    qCh(n,m) = vi*rholiquid*((Lf(n,m)*Lhm)+(cpsolid*(Tsolidus-Tbini))); 

                    qSCh(n,m) = vi*rholiquid*(cpsolid*(Tsolidus-Tbini)); 

                    qLCh(n,m) = vi*rholiquid*(Lf(n,m)*Lhm); 

                end 

                if sphSt(n,m)<Tsolidus 

                    Lf(n,m) = 0; 

                    qCh(n,m) = vi*rhosolid*cpsolid*(sphSt(n,m)-Tbini); 

                    qSCh(n,m) = vi*rhosolid*cpsolid*(sphSt(n,m)-Tbini); 

                    qLCh(n,m) = 0; 

                     

                end  

            end  

            %Energy stored at center of sphere: 

            vc = (4/3)*pi*((deltar/2)^3)*Abed*(1-ep)*deltax/Vpi; 

            if sphSt(Rx,m) > Tliquidus 

                Lf(Rx,m) = 1; 

                qCh(Rx,m) = vc*rholiquid*((cpliquid*(sphSt(Rx,m)-Tliquidus))+Lhm+(cpsolid*(Tsolidus-

Tbini))+(cpave*(Tliquidus-Tsolidus))); 

                qSCh(Rx,m) = vc*rholiquid*((cpliquid*(sphSt(Rx,m)-Tliquidus))+(cpsolid*(Tsolidus-

Tbini))+(cpave*(Tliquidus-Tsolidus))); 

                qLCh(Rx,m) = vc*rholiquid*Lhm; 

            end 

            if (Tliquidus >= sphSt(Rx,m)) && (sphSt(Rx,m)>=Tsolidus) 

                Lf(Rx,m) = (sphSt(Rx,m)-Tsolidus)/(Tliquidus-Tsolidus); 
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                qCh(Rx,m) = vc*rholiquid*((Lf(Rx,m)*Lhm)+(cpsolid*(Tsolidus-Tbini))); 

                qSCh(Rx,m) = vc*rholiquid*(cpsolid*(Tsolidus-Tbini)); 

                qLCh(Rx,m) = vc*rholiquid*(Lf(Rx,m)*Lhm); 

            end 

            if sphSt(Rx,m)<Tsolidus 

                Lf(Rx,m) = 0; 

                qCh(Rx,m) = vc*rhosolid*cpsolid*(sphSt(Rx,m)-Tbini); 

                qSCh(Rx,m) = vc*rhosolid*cpsolid*(sphSt(Rx,m)-Tbini); 

                qLCh(Rx,m) = 0; 

            end  

             

    end 

             

    qChTotal(q) = (0.5*sum(qCh(:,1)))+sum(sum(qCh(:,2:Nx-1)))+(0.5*sum(qCh(:,Nx))); 

    qSChTotal(q) = (0.5*sum(qSCh(:,1)))+sum(sum(qSCh(:,2:Nx-1)))+(0.5*sum(qSCh(:,Nx))); 

    qLChTotal(q) = (0.5*sum(qLCh(:,1)))+sum(sum(qLCh(:,2:Nx-1)))+(0.5*sum(qLCh(:,Nx))); 

     

  

if q == 1 

    EstoreHat(1) = qChTotal(1); 

    SstoreHat(1) = qSChTotal(1); 

    ExstoreHat(1) = exChTotal(1); 

    LstoreHat(1) = qLChTotal(1); 

     

else 

    EstoreHat(q) = qChTotal(q) - qDchTotal(q-1);  

    ExstoreHat(q) = exChTotal(q) - exDchTotal(q-1); 

    LstoreHat(q) = qLChTotal(q) - qLDchTotal(q-1); 

    SstoreHat(q) = qSChTotal(q) - qSDchTotal(q-1); 

end 

  

%******************Calculcating charging 1st Law efficiency***************** 

  

Epumpch = (Pdch*mdotch*(Chargetime(q)+1)*60)/rhoHTF; %Pumping energy consumption. 

%Einflow = mdotch*cpAirIn*(Tai-Tinf)*Chargetime(q)*60; %(Tinf)Energy into system. 

EinNetch(q) = sum(QInNetCh(:,q)); %Total energy leaving system (or energy removed from air going 

into bed) 

Eloss = sum(QlossCh(:,q)); %Total energy lost. 

EsaltStore(q) = rhoHTF*Abed*ep*deltax*cpHTF*(sum(TaSt(2:(Nx-1),1)-TaStIni(2:(Nx-

1),1))+(0.5*(TaSt(1,1)-TaStIni(1,1)))+(0.5*(TaSt(Nx,1)-TaStIni(Nx,1)))); %Energy stored in salt at end 

of charging 

EstoreTotal(q) = EstoreHat(q)+EsaltStore(q); 

EffCh(q) = (EstoreHat(q)+EsaltStore(q))/EinNetch(q) 

      

CapFact(q) = EstoreHat(q)/QbedMax  %Capacity ratio 

CapFactL(q) = LstoreHat(q)/QbedMax 

CapFactS(q) = SstoreHat(q)/QbedMax 

CapRatio(q) = qChTotal(q)/QbedMax  

effectivenessCh(q) = EinNetch(q)/(mdotch*cpHTF*(Tai-Tbi)*Chargetime(q)*60) 
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%**************Calculating charging 2nd Law efficiency********************* 

  

%Exergy calculations:  **************************************************** 

ExHTFChIn(q) = mdotch*cpHTF*60*Chargetime(q)*((Tai+273.15)-(Tinf+273.15)-

((Tinf+273.15)*log((Tai+273.15)/(Tinf+273.15)))); 

ExHTFChNetIn(q) = sum(NetExIn(:,q)); %Net exergy in (Exergy inflow - Exergy outflow) 

 

ExEffCh(q) = (ExstoreHat(q)+ExSaltStore(q))/(ExHTFChNetIn(q)) %Charging exergetic efficiency 

based on net inflow. 

  

  

  

%**************************************************************************  

%********************Start Discharging conditions************************** 

%************************************************************************** 

  

%Setting up Initial condition for Discharging mode 

  

%HTF Initial condition; note that t= 1 is before heating starts. 

TaDSt(:,1) = flipud(TaSt(:,1));  %Takes last time step from charging, flips it and makes it initial condition 

of discharging. 

TaDStIni(:,1) = flipud(TaSt(:,1)); %Sets initial condition of air during discharging mode for efficiency 

calculations. 

  

  

%Solid Initial condition; at time = 1, heating hasn't started 

sphDSt = fliplr(sphSt); %arranges columns in reverse order so that the HTF enters bottom of bed 

TbDStIni(:,1) = flipud(TbSt(:,1)); %Sets initial condition of PCM during discharging mode for efficiency 

calculations 

  

breakflagD = false;  %flag to exit outer loop 

  

     %Bed and air temperature calculations - Discharging mode 

     for t = 1:1:cyclestepdch   

      

        %d(1) = Taia(t,1); %Sets the temperature during this minute to the input temperature for all time 

steps. 

        d(1) = Tbi; %Inlet temperature during discharging is Tbi. 

         

       %Calculating t minutes of discharging. "i" is each time step  

              

        for i = 1:1:(tcolumn)  %Calculating tz minutes of charging."i" is each time step 

             

             if TaDSt(Nx,1) <= TminDch 

                breakflagD = true; 

                break 

             end 

             

             for m = 2:1:Nx 
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                 d(m,1) = TaDSt(m,1)+(hoverallVdch*Be*sphDSt(1,m))+(Tinf*(Uloss*Dbed*pi*Be/Abed)); 

             end 

              

             TaDSt = K\d; 

       

             for m = 1:1:az   %1:1:Nx/3 

                 for n = 2:1:Rx-1 

                    rx = Ri-((n-1)*deltar); 

                    if sphDSt(n,m) > TliquidusD3  

                        B(n,n-1) = -(FolSolid+(FolSolid*deltar/rx)); 

                        B(n,n) = (2*FolSolid)+1; 

                        B(n,n+1) = (FolSolid*deltar/rx)-FolSolid; 

                    end 

                    if  (TliquidusD3 >= sphDSt(n,m)) && (sphDSt(n,m)>= TsolidusD3) 

                        Cp = cpave+(Lhs3/(TliquidusD3-TsolidusD3)); 

                        %Cp = cpsolid+((cpliquid-cpsolid)*(1/(1+exp(-zeta*(sphSt(n,m)-

Tmelt)))))+((Lhm*zeta)/((exp(-zeta*(sphSt(n,m)-Tmelt)))+(exp(zeta*(sphSt(n,m)-Tmelt)))+2)); 

                        Fop1 = (kave*ksolidify*deltat)/(rhoave*Cp*(deltar^2)); 

                        B(n,n-1) = -(Fop1+(Fop1*deltar/rx)); 

                        B(n,n) = (2*Fop1)+1; 

                        B(n,n+1) = (Fop1*deltar/rx)-Fop1; 

                    end 

                    if sphDSt(n,m) < TsolidusD3  

                        B(n,n-1) = -(FosSolid+(FosSolid*deltar/rx)); 

                        B(n,n) = (2*FosSolid)+1; 

                        B(n,n+1) = (FosSolid*deltar/rx)-FosSolid; 

                    end 

                 end 

                %Surface of sphere boundary condition 

                B(1,1) = hoveralldch+(ksolid*ksolidify/deltar); 

                B(1,2) = -ksolid*ksolidify/deltar; 

                     

                  

                %Center of sphere boundary condition 

                if sphDSt(Rx,m) > TliquidusD3   

                    B(Rx,Rx-1) = -6*FolSolid; 

                    B(Rx,Rx) = 1+(6*FolSolid); 

                end 

                if  (TliquidusD3 >= sphDSt(Rx,m)) && (sphDSt(Rx,m)>=TsolidusD3) 

                    Cp = cpave+(Lhs3/(TliquidusD3-TsolidusD3)); 

                    %Cp = cpsolid+((cpliquid-cpsolid)*(1/(1+exp(-zeta*(sphDSt(Rx,m)-

Tmelt)))))+((Lhm*zeta)/((exp(-zeta*(sphDSt(Rx,m)-Tmelt)))+(exp(zeta*(sphDSt(Rx,m)-Tmelt)))+2)); 

                    Fop1 = (kave*ksolidify*deltat)/(rhoave*Cp*(deltar^2)); 

                    B(Rx,Rx-1) = -6*Fop1; 

                    B(Rx,Rx) = 1+(6*Fop1); 

                end   

                if sphDSt(Rx,m) < TsolidusD3  

                    B(Rx,Rx-1) = -6*FosSolid; 

                    B(Rx,Rx) = 1+(6*FosSolid); 

                end 
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                %Calculate new temperature 

                 g(2:Rx) = sphDSt(2:Rx,m); 

                 g(1) = hoveralldch*TaDSt(m,1); 

                  

                 z = B\g; 

                  

                 sphDSt(:,m) = z(:,1); 

             end 

              

             for m = (az+1):1:bz  %((Nx/3)+1):1:(2*Nx/3) 

                 for n = 2:1:Rx-1 

                    rx = Ri-((n-1)*deltar); 

                    if sphDSt(n,m) > TliquidusD2  

                        B(n,n-1) = -(FolSolid+(FolSolid*deltar/rx)); 

                        B(n,n) = (2*FolSolid)+1; 

                        B(n,n+1) = (FolSolid*deltar/rx)-FolSolid; 

                    end 

                    if  (TliquidusD2 >= sphDSt(n,m)) && (sphDSt(n,m)>= TsolidusD2) 

                        Cp = cpave+(Lhs2/(TliquidusD2-TsolidusD2)); 

                        %Cp = cpsolid+((cpliquid-cpsolid)*(1/(1+exp(-zeta*(sphSt(n,m)-

Tmelt)))))+((Lhm*zeta)/((exp(-zeta*(sphSt(n,m)-Tmelt)))+(exp(zeta*(sphSt(n,m)-Tmelt)))+2)); 

                        Fop2 = (kave*ksolidify*deltat)/(rhoave*Cp*(deltar^2)); 

                        B(n,n-1) = -(Fop2+(Fop2*deltar/rx)); 

                        B(n,n) = (2*Fop2)+1; 

                        B(n,n+1) = (Fop2*deltar/rx)-Fop2; 

                   end 

                    if sphDSt(n,m) < TsolidusD2  

                        B(n,n-1) = -(FosSolid+(FosSolid*deltar/rx)); 

                        B(n,n) = (2*FosSolid)+1; 

                        B(n,n+1) = (FosSolid*deltar/rx)-FosSolid; 

                    end 

                 end 

                %Surface of sphere boundary condition 

                B(1,1) = hoveralldch+(ksolid*ksolidify/deltar); 

                B(1,2) = -ksolid*ksolidify/deltar; 

                     

                  

                %Center of sphere boundary condition 

                if sphDSt(Rx,m) > TliquidusD2   

                    B(Rx,Rx-1) = -6*FolSolid; 

                    B(Rx,Rx) = 1+(6*FolSolid); 

                end 

                if  (TliquidusD2 >= sphDSt(Rx,m)) && (sphDSt(Rx,m)>=TsolidusD2) 

                    Cp = cpave+(Lhs2/(TliquidusD2-TsolidusD2)); 

                    %Cp = cpsolid+((cpliquid-cpsolid)*(1/(1+exp(-zeta*(sphDSt(Rx,m)-

Tmelt)))))+((Lhm*zeta)/((exp(-zeta*(sphDSt(Rx,m)-Tmelt)))+(exp(zeta*(sphDSt(Rx,m)-Tmelt)))+2)); 

                    Fop2 = (kave*ksolidify*deltat)/(rhoave*Cp*(deltar^2)); 

                    B(Rx,Rx-1) = -6*Fop2; 

                    B(Rx,Rx) = 1+(6*Fop2); 

                end   
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                if sphDSt(Rx,m) < TsolidusD2  

                    B(Rx,Rx-1) = -6*FosSolid; 

                    B(Rx,Rx) = 1+(6*FosSolid); 

                end 

                %Calculate new temperature 

                 g(2:Rx) = sphDSt(2:Rx,m); 

                 g(1) = hoveralldch*TaDSt(m,1); 

                  

                 z = B\g; 

                  

                 sphDSt(:,m) = z(:,1); 

             end 

             for m = (bz+1):1:Nx  %((2*Nx/3)+1):1:Nx 

                 for n = 2:1:Rx-1 

                    rx = Ri-((n-1)*deltar); 

                    if sphDSt(n,m) > TliquidusD1  

                        B(n,n-1) = -(FolSolid+(FolSolid*deltar/rx)); 

                        B(n,n) = (2*FolSolid)+1; 

                        B(n,n+1) = (FolSolid*deltar/rx)-FolSolid; 

                    end 

                    if  (TliquidusD1 >= sphDSt(n,m)) && (sphDSt(n,m)>= TsolidusD1) 

                        Cp = cpave+(Lhs1/(TliquidusD1-TsolidusD1)); 

                        %Cp = cpsolid+((cpliquid-cpsolid)*(1/(1+exp(-zeta*(sphSt(n,m)-

Tmelt)))))+((Lhm*zeta)/((exp(-zeta*(sphSt(n,m)-Tmelt)))+(exp(zeta*(sphSt(n,m)-Tmelt)))+2)); 

                        Fop3 = (kave*ksolidify*deltat)/(rhoave*Cp*(deltar^2)); 

                        B(n,n-1) = -(Fop3+(Fop3*deltar/rx)); 

                        B(n,n) = (2*Fop3)+1; 

                        B(n,n+1) = (Fop3*deltar/rx)-Fop3; 

                    end 

                    if sphDSt(n,m) < TsolidusD1  

                        B(n,n-1) = -(FosSolid+(FosSolid*deltar/rx)); 

                        B(n,n) = (2*FosSolid)+1; 

                        B(n,n+1) = (FosSolid*deltar/rx)-FosSolid; 

                    end 

                 end 

                %Surface of sphere boundary condition 

                B(1,1) = hoveralldch+(ksolid*ksolidify/deltar); 

                B(1,2) = -ksolid*ksolidify/deltar; 

                     

                  

                %Center of sphere boundary condition 

                if sphDSt(Rx,m) > TliquidusD1   

                    B(Rx,Rx-1) = -6*FolSolid; 

                    B(Rx,Rx) = 1+(6*FolSolid); 

                end 

                if  (TliquidusD1 >= sphDSt(Rx,m)) && (sphDSt(Rx,m)>=TsolidusD1) 

                    Cp = cpave+(Lhs1/(TliquidusD1-TsolidusD1)); 

                    %Cp = cpsolid+((cpliquid-cpsolid)*(1/(1+exp(-zeta*(sphDSt(Rx,m)-

Tmelt)))))+((Lhm*zeta)/((exp(-zeta*(sphDSt(Rx,m)-Tmelt)))+(exp(zeta*(sphDSt(Rx,m)-Tmelt)))+2)); 

                    Fop3 = (kave*ksolidify*deltat)/(rhoave*Cp*(deltar^2)); 
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                    B(Rx,Rx-1) = -6*Fop3; 

                    B(Rx,Rx) = 1+(6*Fop3); 

                end   

                if sphDSt(Rx,m) < TsolidusD1  

                    B(Rx,Rx-1) = -6*FosSolid; 

                    B(Rx,Rx) = 1+(6*FosSolid); 

                end 

                %Calculate new temperature 

                 g(2:Rx) = sphDSt(2:Rx,m); 

                 g(1) = hoveralldch*TaDSt(m,1); 

                  

                 z = B\g; 

                  

                 sphDSt(:,m) = z(:,1); 

             end 

              

              

        end 

        %Calculation of volume averaged solid temperature: 

         for m = 1:1:Nx 

            %Average sphere temperature at first control volume of sphere: 

            TbAveD(1) = ((4/3)*pi*((Ri^3)-((Ri-(deltar/2))^3)))*sphDSt(1,m); 

            for n = 2:1:Rx-1 

                rx1 = Ri-((n-1)*deltar); 

                v1 = ((4/3)*pi*((rx1+(deltar/2))^3)); 

                v2 = ((4/3)*pi*((rx1-(deltar/2))^3)); 

                TbAveD(n) = (v1-v2)*sphDSt(n,m); 

            end 

            %Average sphere temperature at center of sphere. 

            TbAveD(Rx) = (4/3)*pi*((deltar/2)^3)*(sphDSt(Rx,m)); 

                  

            TbDSt(m,1) = sum(TbAveD)/Vpi; 

         end 

          

         TbfirstD(:,t) = sphDSt(2,:).'; 

         TbcenterD(:,t) = sphDSt(Rx,:).'; 

         TbhalfD(:,t) = sphDSt((Rx/2),:).'; 

         TaD(:,t) = TaDSt(:,1); 

         TbD(:,t) = TbDSt(:,1); 

           

         %Exporting the (tz)th minute into excel: 

         Tairdischarge(1,t) = t*tz; %Places the number of minutes of charging in the 1st row. 

         Tbeddischarge(1,t) = t*tz; %Note that the 1st column is reserved for the initial time. 

         TbedcenterD(1,t) = t*tz; 

         TbedfirstD(1,t) = t*tz; 

         TbedhalfD(1,t) = t*tz; 

         for m = 2:Nx+1     %Places the last time step in the correct column of the excel table. 

             Tairdischarge(m,t) = TaD(m-1,t); 

             Tbeddischarge(m,t) = TbD(m-1,t); 

             TbedcenterD(m,t) = TbcenterD(m-1,t); 
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             TbedfirstD(m,t) = TbfirstD(m-1,t); 

             TbedhalfD(m,t) = TbhalfD(m-1,t); 

         end 

          

         %Calculating the amount of energy discharged from the bed at each 

         %minute: 

         EoutflowD(t,q) = mdotdch*cpHTF*(TaDSt(Nx,1)-Tbi)*60; 

          

         %Calculating energy losses per minute: 

         QlossDch(t,q) = (Uloss*Dbed*pi*deltax*sum(Tinf-TaDSt(2:Nx-

1,1))*60)+(Uloss*Dbed*pi*0.5*deltax*((Tinf-TaDSt(1,1))+(Tinf-TaDSt(Nx,1)))*60); 

          

         %Calculating Net Exergy into system per minute: 

         NetExOut(t,q) = mdotdch*cpHTF*((TaDSt(Nx,1)+273.15)-(Tbi+273.15)-

((Tinf+273.15)*log((TaDSt(Nx,1)+273.15)/(Tbi+273.15))))*60; 

      

         if breakflagD == true 

             break 

         end 

     end 

      

     Dischargetime(q) = t-1 %Discharging time in minutes 

     

      

    %Calculating energy stored in tank: 

    for m = 1:1:Nx 

           if (m >= 1) && (m <= az)                  

TliquidusD = TliquidusD3; 

               TsolidusD = TsolidusD3; 

               Lhs = Lhs3; 

               Tsolidify = Tsolidify3; 

           end 

           if (m > az) && (m <= bz)    

               TliquidusD = TliquidusD2; 

               TsolidusD = TsolidusD2; 

               Lhs = Lhs2; 

               Tsolidify = Tsolidify2; 

           end 

           if (m > bz) && (m <= Nx)   

               TliquidusD = TliquidusD1; 

               TsolidusD = TsolidusD1; 

               Lhs = Lhs1; 

               Tsolidify = Tsolidify1; 

           end 

        %Average energy stored at first control volume of sphere: 

            vo = (((4/3)*pi*((Ri^3)-((Ri-(deltar/2))^3)))*Abed*(1-ep)*deltax)/Vpi; 

            if sphDSt(1,m) > TliquidusD 

                LfD(1,m) = 1; 

                qDch(1,m) = vo*rholiquid*((cpliquid*(sphDSt(1,m)-TliquidusD))+Lhs+(cpsolid*(TsolidusD-

Tbini))+(cpave*(TliquidusD-TsolidusD))); 
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                qSDch(1,m) = vo*rholiquid*((cpliquid*(sphDSt(1,m)-TliquidusD))+(cpsolid*(TsolidusD-

Tbini))+(cpave*(TliquidusD-TsolidusD))); 

                qLDch(1,m) = vo*rholiquid*Lhs; 

            end  

            if (TliquidusD >= sphDSt(1,m)) && (sphDSt(1,m)>=TsolidusD) 

                LfD(1,m) = (sphDSt(1,m)-TsolidusD)/(TliquidusD-TsolidusD); 

                qDch(1,m) = vo*rholiquid*((LfD(1,m)*Lhs)+(cpsolid*(TsolidusD-Tbini))); 

                qSDch(1,m) = vo*rholiquid*(cpsolid*(TsolidusD-Tbini)); 

                qLDch(1,m) = vo*rholiquid*(LfD(1,m)*Lhs); 

            end 

            if sphDSt(1,m)<TsolidusD 

                LfD(1,m) = 0; 

                qDch(1,m) = vo*rhosolid*cpsolid*(sphDSt(1,m)-Tbini); 

                qSDch(1,m) = vo*rhosolid*cpsolid*(sphDSt(1,m)-Tbini); 

                qLDch(1,m) = 0; 

            end 

            for n = 2:1:Rx-1 

                rx1 = Ri-((n-1)*deltar); 

                v1 = ((4/3)*pi*((rx1+(deltar/2))^3)); 

                v2 = ((4/3)*pi*((rx1-(deltar/2))^3)); 

                vi = ((v1-v2)*Abed*(1-ep)*deltax)/Vpi; 

                if sphDSt(n,m) > TliquidusD 

                    LfD(n,m) = 1; 

                    qDch(n,m) = vi*rholiquid*((cpliquid*(sphDSt(n,m)-TliquidusD))+Lhs+(cpsolid*(TsolidusD-

Tbini))+(cpave*(TliquidusD-TsolidusD))); 

                    qSDch(n,m) = vi*rholiquid*((cpliquid*(sphDSt(n,m)-TliquidusD))+(cpsolid*(TsolidusD-

Tbini))+(cpave*(TliquidusD-TsolidusD))); 

                    qLDch(n,m) = vi*rholiquid*Lhs; 

                end 

                if (TliquidusD >= sphDSt(n,m)) && (sphDSt(n,m)>=TsolidusD) 

                    LfD(n,m) = (sphDSt(n,m)-TsolidusD)/(TliquidusD-TsolidusD); 

                    qDch(n,m) = vi*rholiquid*((LfD(n,m)*Lhs)+(cpsolid*(TsolidusD-Tbini))); 

                    qSDch(n,m) = vi*rholiquid*(cpsolid*(TsolidusD-Tbini)); 

                    qLDch(n,m) = vi*rholiquid*(LfD(n,m)*Lhs); 

                end 

                if sphDSt(n,m)<TsolidusD 

                    LfD(n,m) = 0; 

                    qDch(n,m) = vi*rhosolid*cpsolid*(sphDSt(n,m)-Tbini); 

                    qSDch(n,m) = vi*rhosolid*cpsolid*(sphDSt(n,m)-Tbini); 

                    qLDch(n,m) = 0; 

                     

                end  

            end  

            %Energy stored at center of sphere: 

            vc = (4/3)*pi*((deltar/2)^3)*Abed*(1-ep)*deltax/Vpi; 

            if sphDSt(Rx,m) > TliquidusD 

                LfD(Rx,m) = 1; 

                qDch(Rx,m) = vc*rholiquid*((cpliquid*(sphDSt(Rx,m)-

TliquidusD))+Lhs+(cpsolid*(TsolidusD-Tbini))+(cpave*(TliquidusD-TsolidusD))); 
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                qSDch(Rx,m) = vc*rholiquid*((cpliquid*(sphDSt(Rx,m)-TliquidusD))+(cpsolid*(TsolidusD-

Tbini))+(cpave*(TliquidusD-TsolidusD))); 

                qLDch(Rx,m) = vc*rholiquid*Lhs; 

            end 

            if (TliquidusD >= sphDSt(Rx,m)) && (sphDSt(Rx,m)>=TsolidusD) 

                LfD(Rx,m) = (sphDSt(Rx,m)-TsolidusD)/(TliquidusD-TsolidusD); 

                qDch(Rx,m) = vc*rholiquid*((LfD(Rx,m)*Lhs)+(cpsolid*(TsolidusD-Tbini))); 

                qSDch(Rx,m) = vc*rholiquid*(cpsolid*(TsolidusD-Tbini)); 

                qLDch(Rx,m) = vc*rholiquid*(LfD(Rx,m)*Lhs); 

            end 

            if sphDSt(Rx,m)<TsolidusD 

                LfD(Rx,m) = 0; 

                qDch(Rx,m) = vc*rhosolid*cpsolid*(sphDSt(Rx,m)-Tbini); 

                qSDch(Rx,m) = vc*rhosolid*cpsolid*(sphDSt(Rx,m)-Tbini); 

                qLDch(Rx,m) = 0; 

            end  

             

    end 

             

    qDchTotal(q) = (0.5*sum(qDch(:,1)))+sum(sum(qDch(:,2:Nx-1)))+(0.5*sum(qDch(:,Nx))); 

    qSDchTotal(q) = (0.5*sum(qSDch(:,1)))+sum(sum(qSDch(:,2:Nx-1)))+(0.5*sum(qSDch(:,Nx))); 

    qLDchTotal(q) = (0.5*sum(qLDch(:,1)))+sum(sum(qLDch(:,2:Nx-1)))+(0.5*sum(qLDch(:,Nx))); 

  

if q == 1 

    EstoreHatD(1) = qDchTotal(1); 

    ExstoreHatD(1) = exDchTotal(1); 

else 

    EstoreHatD(q) = qChTotal(q) - qDchTotal(q);  

    ExstoreHatD(q) = exChTotal(q) - exDchTotal(q); 

end 

      

SensibleOut(q) = qSChTotal(q) - qSDchTotal(q); 

LatentOut(q) = qLChTotal(q) - qLDchTotal(q); 

  

%Calculating Utilization factor: 

  

Utotal(q) = (SensibleOut(q)+LatentOut(q))/QbedMax %Total utilization 

Usensible(q) = SensibleOut(q)/QbedMax %Sensible Heat Utilization 

Ulatent(q) = LatentOut(q)/QbedMax %Latent Heat Utilization 

LatentRatio(q) = LatentOut(q)/QlatentMax; %Ratio of discharged latent heat over max Latent heat 

LatentStore(q) = qLChTotal(q)/QlatentMax; %Ratio of stored latent heat over max Latent heat. 

LatentEff(q) = LatentOut(q)/qLChTotal(q) %Ratio of latent heat extracted over latent heat actually stored 

SensibleEff(q) = SensibleOut(q)/qSChTotal(q) 

  

%Calculating discharging efficiency: 

EpumpDch = (Pdch*Abed*Gdch*(1+Dischargetime(q))*60)/rhoHTF; %Pumping energy consumption. 

(joules) 

EoutDch(q) = sum(EoutflowD(:,q)); %Energy discharged from system (joules) 

EoutDchWh(q) = EoutDch(q)/(3600*10^6) %Energy discharged (MWh) 

ELossDch(q) = sum(QlossDch(:,q)); 
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EffDch(q) = EoutDch(q)/(EstoreHat(q)+EsaltStore(q)) %Discharging efficiency 

EffOverall(q) = EffDch(q)*EffCh(q) 

EffOverallT(q) = EoutDch(q)/(EinNetch(q)+EpumpDch+Epumpch) 

  

%**************Calculating discharging 2nd Law efficiency********************* 

%Exergy calculations:  **************************************************** 

ExHTFDchNetOut(q) = sum(NetExOut(:,q)); %Net exergy out (Exergy outflow - Exergy inflow) 

  

%Dicharging exergetic efficiency based on net outflow and pump work. 

ExEffDch(q) = (ExHTFDchNetOut(q))/(ExstoreHat(q)+ExSaltStore(q)) 

  

ExEffOverall(q) = ExEffDch(q)*ExEffCh(q) %Overall exergetic efficiency 

ExEffOverallT(q) = ExHTFDchNetOut(q)/(ExHTFChNetIn(q)+EpumpDch+Epumpch) 

  

xlswrite('LHS_parametric_HTF.xlsx',Taircharge,xlssheetnames{count});  

xlswrite('LHS_parametric_PCM.xlsx',Tbedcharge,xlssheetnames{count});  

xlswrite('LHS_parametric_PCM.xlsx', Tbeddischarge,xlssheetnames{count+1}); 

  

 

TaSt(:,1) = flipud(TaDSt(:,1));  %Takes last time step from discharging, flips it and makes it initial 

condition of charging of next cycle. 

TaStIni(:,1) = flipud(TaDSt(:,1)); %Sets initial condition of air during charging mode for efficiency 

calculations. 

sphSt = fliplr(sphDSt); %arranges columns in reverse order so that the air enters top of bed for next 

charging cycle. 

TbStIni(:,1) = flipud(TbDSt(:,1)); %Sets initial condition of PCM during charging mode for efficiency 

calculations. 

sphStIni = fliplr(sphDSt); %sets initial temperature within each particle for next chargning cycle. 

  

count = count+2; 

Taircharge = []; 

Tairdischarge = []; 

Tbedcharge = []; 

Tbeddischarge = []; 

end 

 

D.2 HTF Properties 
 

function [rho,mu,cp,k] = HTFprops(x,Tave); 
%This function provides the properties of the selected HTF, either air or 
%salt. 
%Written by Jamie Trahan, December 12, 2014 
%If x == 1, the HTF is air 
%If x == 2, the HTF is salt 
%________________________________________________________________________ 
  
if x == 1 
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    rho = ((-5.75399E-16)*(Tave^5))+((3.02846E-12)*(Tave^4))-((6.18352E-9)*(Tave^3))+((6.29927E-

6)*(Tave^2))-((3.5422E-3)*Tave)+1.25079; %density of air (kg/m3) 
    mu = (((6.10504E-10)*(Tave^3))-((2.13036E-6)*(Tave^2))+((4.71398E-3)*(Tave))+1.67555)*(10^-5); 

%Dynamic viscosity of air (kg/ms) 
    cp = (((1.28806E-13)*(Tave^4))-((4.46054E-10)*(Tave^3))+((4.8772E-7)*(Tave^2))+((1.82754E-

5)*Tave)+1.00651)*1000; %Cp of air (J/kg-K) 
    k = ((-4.44955E-15)*(Tave^4))+((2.41702E-11)*(Tave^3))-((4.09601E-8)*(Tave^2))+((7.91034E-

5)*Tave)+.0242006; % thermal conductivity of air (W/mK) 
end 
  
if x == 2 
    rho = (-0.6357*Tave)+2089.9; %density of salt (kg/m3) 
    mu = ((-1.473189317978e-10)*(Tave^3))+((2.279835623143e-07)*(Tave^2))-((1.199467889194e-

04)*Tave)+2.270644077145e-02; %Dynamic viscosity of air (kg/ms) 
    cp = (0.172*Tave)+1443; %Cp of air (J/kg-K) 
    k = (0.00019*Tave)+0.44299; % thermal conductivity of air (W/mK) 
  
end 
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